超快激光助力新型晶圆制造

DT半导体材料 2024-09-27 18:35

晶圆作为集成电路行业的核心衬底材料,其生产过程涉及多个关键步骤,如晶棒制造、切片、研磨、刻蚀和抛光。其中,研磨和抛光对晶圆的应用性能起着至关重要的作用。随着集成电路集成化水平的不断提升,市场对大尺寸晶圆的需求急剧增加,这对研磨与抛光设备提出了更高要求。

目前,全球晶圆制造普遍采用化学机械抛光(CMP)技术,这一系统集成了化学和机械作用以实现高精度的晶圆表面加工。然而,我国在CMP抛光机及相关消耗材料(如抛光垫和抛光膏)上仍严重依赖进口,这已成为制约我国集成电路产业发展的“卡脖子”技术瓶颈,直接威胁国家和公众的信息安全。

近年来,激光精密加工技术在硅晶圆制造中取得了显著进展。美国俄克拉何马州立大学的Komanduri团队研究发现,随着激光能量密度的增加,单晶硅的烧蚀深度呈非线性急速增加。西班牙维戈大学的Conde团队则详细解释了硅在准分子激光烧蚀过程中发生的微观结构变化机制。此外,瑞士应用物理研究所的Gloor团队通过深紫外准分子激光对金刚石半导体材料进行抛光,显著减少了表面不规则形貌。然而,500μm以上的波纹仍然存在,尚需进一步改善。日本东北大学的Yan团队利用激光辐照将多晶硅层转化为单晶硅,并将表面粗糙度从12nm降低至8nm。日本庆应大学的Niitsu团队通过激光处理获得了表面粗糙度约为1.1nm的硼掺杂单晶硅样片。

值得一提的是,中国科学院大学的张志宇团队提出了双步激光辐射抛光单晶硅的新方法,成功获得了粗糙度为26nm的无缺陷光滑表面。这一成果为未来激光技术在晶圆制造中的应用奠定了基础。

   激光技术在晶圆减薄中的应用:效率与性能兼顾

晶圆减薄是集成电路制造中至关重要的一步,超精密磨削加工是目前晶圆减薄的主要方法。然而,传统磨削方法在减薄过程中不可避免地会在晶圆表面引入磨削损伤,导致后续必须使用化学机械抛光(CMP)或刻蚀等工艺去除这些损伤。这不仅增加了额外的工艺步骤,还带来了时间和成本上的负担。

为了应对这一挑战,北京航空航天大学的科研团队应用激光精密加工技术,对多晶硅进行了定量减薄,成功将多晶硅厚度从199μm减少到102μm,且整个过程未引入裂纹等机械性损伤。激光加工时的热影响区被严格控制在1μm以内,有效避免了常见的热应力破坏问题。实验表明,激光减薄技术不仅减少了多晶硅中的缺陷,还改善了其力学性能。

激光减薄多晶硅 (a)减薄后多晶硅的热影响区; (b)减薄后多晶硅的截面形貌; (c)减薄前后多晶硅的表面拉曼光谱; (d)减薄前后多晶硅的电流-电压曲线 图源:公开网络

与传统方法相比,激光减薄技术具有显著优势:在改善材料表面质量的同时,对其电学性能几乎没有影响。例如,在对多晶硅减薄前后的拉曼位移进行对比测试后发现,减薄后的残余应力较原始多晶硅有所降低。这意味着激光工艺在减少材料内应力方面表现优异。进一步的电阻率测试显示,原始多晶硅材料的电阻率为1.799Ω·cm,而经过激光减薄后的电阻率仅微升至1.856Ω·cm,表明该工艺对材料的电性能影响较小。

图示分析也证明了这一点。不同减薄步骤后的典型拉曼位移与电流-电压(I-V)曲线表明,激光技术实现了多晶硅的高精度减薄,同时对其机械和电学性能几乎无不良影响。这为硅晶圆减薄提供了一条新的、更加高效的技术路径,具备减少损伤、提高效率以及控制成本的多重优势。

   激光抛磨改性优势

晶圆制造过程中,研磨和抛光是去除金刚石锯切产生的切割痕迹和表面损伤的关键步骤。传统的机械研磨主要依赖磨料的滚轧和微切削作用,虽然能够去除一定的材料,但同时会不可避免地在晶圆表面产生应力层和机械损伤。因此,在晶圆研磨后,必须进行进一步的表面处理以消除这些缺陷。

为了应对机械研磨后单晶硅晶圆表面缺陷的问题,北京航空航天大学基于激光与半导体材料相互作用的机理,开发了一种激光精密加工技术对研磨后的单晶硅表面进行改性。实验表明,经过激光处理后,单晶硅表面的粗糙度由原始的0.4μm降至0.075μm。这一改进主要得益于激光辐照在材料表面形成的微熔池,微熔池通过“融峰填谷”效应消除了表面不规则的凸起和凹坑,显著提升了表面光滑度。

复合激光研磨单晶硅 (a)激光研磨前后单晶硅的表面形貌; (b)激光研磨前后单晶硅表面的X射线衍射能谱图; (c)激光研磨前后单晶硅表面的拉曼光谱 图源:公开网络

激光抛光不仅改善了单晶硅表面的物理形态,还有效减少了二氧化硅氧化层的存在。抛光后,表面原有的多晶硅层被转化为单晶硅,进一步提高了表面质量。对激光抛光前后的单晶硅进行了电学性能测试,结果显示,抛光后的电流-电压曲线斜率略有降低,表明激光抛光对电学性能的影响较小

此外,针对晶圆切片过程中常见的机械切割痕迹,北航的科研团队还提出了一种复合激光精密加工的新方法,该方法能有效去除单晶硅表面的机械痕迹,将表面粗糙度从934nm降低至251nm,大幅提升了晶圆的表面质量。同时,激光研磨还显著减少了表面二氧化硅层的厚度,并将表面残余应力由原本的拉应力转变为压应力,从而抑制了裂纹的产生与扩展。这一技术不仅提升了晶圆的制造质量,也延长了其使用寿命,为晶圆制造中的表面处理提供了创新的解决方案。

   第八届国际碳材料大会暨产业展览会

——宽禁带半导体及超精密加工论坛&金刚石前沿应用及产业发展论坛

第八届国际碳材料大会暨产业展览会(Carbontech 2024),将于12月5-7日在上海新国际展览中心召开。

针对新型半导体(金刚石、氧化镓、氮化镓、碳化硅、AlN……)以及超精密加工(材料、工艺、设备)设置宽禁带半导体及超精密加工论坛金刚石前沿应用及产业发展论坛两大论坛。展会针对金刚石及其功能化应用主题、半导体超精密加工设置10000㎡专题展区,将展示最新金刚石晶圆、量子钻石、热沉金刚石等功能化产品及相关器件,欢迎莅临现场交流、合作。

扫码,立即预报名,了解详情

Carbontech 2024 W1馆部分参展企业:

说明:本文部分素材来自网络公开信息,由作者重新编写,转载请备注来源,本平台发布仅为了传达一种不同视角,不代表对该观点赞同或支持。



DT半导体材料 聚焦于半导体材料行业的最新动态
评论 (0)
  • 本文介绍瑞芯微RK356X系列复用接口配置的方法,基于触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。复用接口介绍由下图可知,红圈内容当前引脚可配置为SPI0或者PWM0功能。由标准系统固件以及相关系统手册可得,当前接口默认配置为SPI0功能:console:/ # ls dev/spidev0.0dev/spidev0.0再由原理图可知当前GPIO为GPIO0_C3
    Industio_触觉智能 2025-03-28 18:14 163浏览
  • 3月27日,长虹中玖闪光超高剂量率电子射线放射治疗系统(e-Flash)临床试验项目在四川大学华西医院正式启动,标志着该项目正式进入临床试验阶段。这不仅是我国医学技术领域的一项重大突破,更是我国在高端医疗设备研发和应用方面的重要里程碑。e-Flash放射治疗系统适用于哪些病症,治疗周期为多久?会不会产生副作用?治疗费用高不高……随着超高剂量率电子射线放射治疗系统(e-Flash)正式进入临床试验阶段,社会各界对该项目的实施情况尤为关注。对此,中国工程院院士范国滨,以及四川大学华西医院、四川省肿瘤
    华尔街科技眼 2025-03-28 20:26 327浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 84浏览
  • 文/杜杰编辑/cc孙聪颖‍3月11日,美国总统特朗普,将自费8万美元购买的特斯拉Model S,开进了白宫。特朗普此举,绝非偶然随性,而是有着鲜明的主观意图,处处彰显出一种刻意托举的姿态 。特朗普也毫不讳言,希望他的购买能推动特斯拉的发展。作为全球电动车鼻祖,特斯拉曾凭借创新理念与先进技术,开辟电动汽车新时代,引领行业发展潮流。然而当下,这家行业先驱正深陷困境,面临着前所未有的挑战。就连“钢铁侠”马斯克自己都在采访时表示“非常困难”,的确是需要美国总统伸手拉一把了。马斯克踏入白宫的那一刻,特斯拉
    华尔街科技眼 2025-03-28 20:44 182浏览
  •        随着智能驾驶向L3级及以上迈进,系统对实时性的要求已逼近极限。例如,自动紧急制动(AEB)需在50毫秒内完成感知、决策到执行的全链路响应,多传感器数据同步误差需小于10微秒。然而,传统基于Linux-RT的方案在混合任务处理中存在天然缺陷——其最大中断延迟高达200微秒,且多任务并发时易引发优先级反转问题。据《2024年智能汽车电子架构白皮书》统计,超60%的车企因实时性不足被迫推迟舱驾一体化项目落地。为旌电子给出的破局之道,是采用R5F(实
    中科领创 2025-03-29 11:55 257浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 104浏览
  • 一、真空容器的定义与工作原理真空容器是一种能够创造并保持一定真空度的密闭容器。其工作原理通常涉及抽气系统,该系统能够逐渐抽出容器内部的气体分子,从而降低容器内的气压,形成真空环境。在这个过程中,容器的体积并不会因抽气而改变,但容器内的压力会随着气体的抽出而逐渐降低。二、真空容器并非恒压系统真空容器并非一个恒压系统。恒压系统指的是在外部环境变化时,系统内部压力能够保持相对稳定。然而,在真空容器中,随着气体的不断抽出,内部压力会持续降低,直至达到所需的真空度。因此,真空容器内部的压力是变化的,而非恒
    锦正茂科技 2025-03-29 10:23 152浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 66浏览
  • 在工业控制与数据采集领域,高精度的AD采集和实时显示至关重要。今天,我们就来基于瑞芯微RK3568J + FPGA国产平台深入探讨以下,它是如何实现该功能的。适用开发环境如下:Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:Ubuntu18.04.4 64bit、VMware15.5.5U-Boot:U-Boot-2017.09Kernel:Linux-4.19.232、Linux-RT-4.19.232LinuxSDK:LinuxSD
    Tronlong 2025-03-28 10:14 196浏览
  • 本文介绍OpenHarmony5.0 DevEco Studio开发工具安装与配置,鸿蒙北向开发入门必备!鸿蒙北向开发主要侧重于应用层的开发,如APP开发、用户界面设计等,更多地关注用户体验、应用性能优化、上层业务逻辑的实现,需要开发者具备基本的编程知识、对操作系统原理的简单理解,以及一定的UI设计感。由触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,支持开源鸿蒙OpenHarmony3.2至5.0系统,适合鸿蒙开发入门学习。下载与安装开发工具点下面链接下载:
    Industio_触觉智能 2025-03-28 18:16 228浏览
  • 真空容器的材料选择取决于其应用场景(如科研、工业、医疗)、真空等级(低真空、高真空、超高真空)以及环境条件(温度、压力、化学腐蚀等)。以下是常见材料及其优缺点分析:1. 不锈钢(如304、316L)优点:耐腐蚀性强:316L含钼,耐酸碱和高温氧化,适合高真空和腐蚀性环境。高强度:机械性能稳定,可承受高压差和外部冲击。低放气率:经电解抛光或镀镍处理后,表面放气率极低,适合超高真空系统(如粒子加速器、半导体镀膜设备)。易加工:可焊接、铸造,适合复杂结构设计。缺点:重量大:大型容器运输和安装成本高。磁
    锦正茂科技 2025-03-29 10:52 49浏览
  • 真空容器内部并非wan全没有压强,而是压强极低,接近于零。真空状态下的压强与容器内外气体的分子数量、温度以及容器本身的性质有关。一、真空与压强的基本概念真空指的是一个空间内不存在物质或物质极少的状态,通常用于描述容器或系统中气体的稀薄程度。压强则是单位面积上所受正压力的大小,常用于描述气体、液体等流体对容器壁的作用力。二、真空状态下的压强特点在真空状态下,容器内部的气体分子数量极少,因此它们对容器壁的作用力也相应减小。这导致真空容器内部的压强远低于大气压强,甚至接近于零。然而,由于技术限制和物理
    锦正茂科技 2025-03-29 10:16 164浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦