ClassE功率放大器简介

EETOP 2024-09-27 11:58
汽车芯片设计资料包

本文用于了解E类放大器如何在射频频率下提高D类放大器的效率。

为了提高D类放大器(Class D)的效率,其开关需要相对于操作频率相当快。随着我们向越来越高的频率迈进,这变得越来越具有挑战性。在D类射频放大器中,开关间隔可能占操作周期的很大一部分。来自寄生电容的损耗也随着频率的增加而增加,从而带来了进一步的问题。

E类功率放大器有效地克服了这些挑战。与D类放大器一样,它们也是开关模式放大器。然而,它们的负载网络是专门设计的,以最小化开关损耗,并将来自并联(晶体管输出)电容的能量引导到负载。在本文中,我们将讨论E类放大器的设计是如何避免D类放大器在高频操作时的缺陷的。

D类和E类电路的对比

考虑图1中所示的互补电压切换D类放大器。

图1. 节点A的寄生电容由Cp建模的互补电压切换配置。

在上图中,C模拟了晶体管的寄生输出电容。晶体管在交替的半周期内开启和关闭,导致节点A的电压在VCC和地之间切换。每当发生转换时,Cp的充电和放电会导致一些能量作为热量在开关的导通电阻中耗散。

例如,对于从VCC到地的转换,晶体管Q2开启并放电最初存储在Cp中的电荷。这会在Q2的导通电阻中耗散一些能量。由于Cp的充电和放电而损失的总功率为:


其中 是放大器的开关频率。

D类放大器的操作涉及Cp的充电和放电,但存储在电容中的能量并未传递到负载。事实上,Cp的值根本不会影响输出射频功率——它从电源中汲取的功率都转化为热量而损失了。

相比之下,图2显示了最简单的E类放大器的电路原理图。

图2. 低阶E类放大器的原理图。

此电路中的晶体管被驱动为开关。射频扼流圈(L1)为电源提供了一个直流路径,并在射频下近似为开路。LC形成了一个串联调谐电路,将负载连接到晶体管的集电极。

在晶体管和C0之间是并联电容(Csh)。并联电容既包括在输出端添加的电容器,也包括器件输出的寄生电容。与D类放大器不同,存储在此电容中的能量不会作为热量耗散——相反,它被引导到负载。

正如我们将在本文后面看到的,Csh在E类放大器的操作中起着关键作用。然而,在此之前,我们需要理解有限开关速度的问题。只有这样,我们才能讨论E类功率放大器是如何处理这个问题的。

缓慢上升和下降时间对开关模式操作的影响

当开关的驱动信号是理想的时,它们近似为具有陡峭边缘的矩形波形。为了更准确地反映实际情况,我们应该假设开关的电流和电压波形是梯形而不是矩形。这在图3中有所说明。

图3. 实际开关的电流(上)和电压(下)波形具有非零转换间隔。

为了理解图3中的波形,请回顾开关模式功率放大器的基本概念——即,将晶体管作为开关而非电流源操作会导致更高的效率。理想开关不耗散功率,因为在任何时刻其电压和电流的乘积都为零。当开关开启时,它没有电压降;当开关关闭时,它没有电流流动。由于晶体管不耗散功率,因此开关模式功率放大器的理论效率可以接近100%。

然而,在实际中,晶体管的状态并不是瞬间变化的。在开关间隔期间,开关两端的电压和通过它的电流都是可观的。由于非零的IV乘积,功率在晶体管中耗散,从而降低了放大器的效率。

E类放大器通过策略性地使电压和电流切换转换在时间上相互错开,从而避免了这种情况。理想情况下,即使开关转换占射频周期的很大一部分,这也会导致晶体管中的功率耗散为零。这种时间偏移是通过仔细设计负载网络(包括器件输出端的并联电容Csh (图2中的))来实现的。在接下来的部分中,我们将研究这种设计是如何在开关关断和开启转换期间消除开关损耗的。

消除开关关断损耗

具有纯阻性负载的电路将具有图3中所示的开关电压和电流波形,其中开关电流的变化会转化为开关电压的瞬时和比例变化。然而,如果我们向负载网络中添加一个并联电容器,我们可以预期开关电压和电流波形的边缘之间会有一些延迟。这是因为电容器两端的电压变化(ΔVc)与电容成反比,如方程2所示:


对于给定的电流(I),额外的电容(C)在给定的时间间隔(Δt)内减小了ΔVc。因此,我们可以通过选择一个足够大的并联电容器来产生所需的时间偏移。

图4显示了添加时间延迟如何影响图3中的波形。

图4. 通过将集电极电压的上升延迟到开关电流降至零之后而产生的波形。

在图4中,在开关的开启到关闭转换期间(T1和T3间隔),电压和电流波形的非零部分没有重叠。因此,在关断转换期间,我们有IV=0,导致功率损失为零。然而,围绕T2间隔(关闭到开启转换)的重叠实际上增加了。

显然,仅仅引入延迟并不足以在两组转换期间都消除开关损耗。为了理解E类放大器如何在关闭到开启转换期间消除开关功率损耗,我们需要检查开关处于关闭状态时电路的情况。

消除开关开启损耗

图5显示了开关关闭时E类放大器的负载网络。

图5. 开关关闭时E类放大器的负载网络。

在开关关闭后,E类放大器的负载网络作为一个阻尼二阶系统工作,其电感器(L0)和电容器(C0 and Csh)中存储了一些初始能量。尽管在这个半周期内没有向负载网络施加输入,但系统中存储的初始能量会引起瞬态响应。由于 RL 耗散能量,瞬态响应最终会消失。

为了深入了解负载网络的响应,让我们使用图6中的LTspice原理图。请注意,此电路的初始条件和组件值都是任意选择的。

图6. 用于检查具有一些初始条件的串联RLC电路响应的LTspice原理图。

从我们的电路理论课程中,我们知道组件的值可以导致三种不同的瞬态响应类型:

* 过阻尼。

* 临界阻尼。

* 欠阻尼。

图7显示了对于三个不同的RL值,电容器(C1)两端电压的时间响应,这使我们能够检查所有三个阻尼级别。

图7. 对于RL=10Ω、20Ω和30Ω,串联RLC电路的响应。

尽管响应的形状取决于组件值,但RL的存在确保了最终的电容器电压为零。如果我们功率放大器中开关的关闭半周期足够长,当开关开启时,电容器电压实际上会降低到0V。与图4中所示的假设情况不同,这自动消除了关闭到开启转换期间开关电流和电压波形之间的重叠。

图8显示了E类放大器的典型(尽管不是理想的)开关波形。

图8. E类放大器的典型开关电流(上)和电压(下)波形。

总结

为了获得最佳性能,E类放大器中的负载网络应设计为产生临界阻尼响应。我们将在未来的文章中讨论其原因。然而,在此之前,我们将研究E类功率放大器设计的理想开关电压和电流波形。我们还将讨论生成这些波形的实际约束。


来源:EETOP编译自allaboutcircuits

原文:

https://www.allaboutcircuits.com/technical-articles/introduction-to-the-class-e-power-amplifier


汽车芯片设计资料包

EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
评论
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 123浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 238浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 211浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 147浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 128浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 113浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦