精密与超精密加工技术的起源可以追溯到原始社会。在那个时代,原始人类通过打磨石器制作出具有锋利边缘和特定形状的工具,这被认为是最早的手工研磨工艺的雏形。进入青铜器时代后,制作光滑表面的铜镜逐渐成为一种常见的技艺,这一过程其实是研磨和抛光技术的早期应用。然而,真正意义上的精密加工技术直到近代才逐步成型。
近年来,美国启动了“微米和纳米级技术”国家关键技术计划,以推动在这些领域的技术进步。为了确保研究的顺利进行和资源的优化配置,美国国防部专门成立了一个特别委员会,负责统一协调相关研究工作。目前,美国至少有30多家公司致力于开发和生产各类超精密加工机床。其中,国家劳伦斯利佛摩尔实验室(LLNL)和摩尔(Moore)公司在国际超精密加工技术领域享有盛誉。这些设备不仅在理论研究中取得了突破,还成功应用于陶瓷、硬质合金、玻璃和塑料等不同材料的零件加工,产品涵盖了各种复杂形状,广泛服务于航空、航天、半导体、能源和医疗器械等高科技行业。
美国劳伦斯利佛摩尔实验室 图源:公开网络
与此同时,日本也在超精密加工技术领域取得了显著的成就。当前,日本有20多家公司专注于研发民用产品所需的超精密加工设备,并成功批量生产了多种类型的商品化超精密加工机床。得益于这些技术的发展,日本的相机、电视、复印机和投影仪等民用光学产业得到了快速提升,其飞跃性进展与超精密加工技术的成熟应用息息相关。
日本TOWA株式会社 图源:公开网络
在欧洲,英国从上世纪60年代开始就已投入对超精密加工技术的研究,并成立了国家纳米技术战略委员会,负责执行国家纳米技术研究计划。德国和瑞士则凭借其在精密加工设备制造方面的传统优势,在全球范围内享有盛名。自1992年以来,欧洲启动了一系列联合研究与发展计划,进一步加强了成员国之间的科技合作,加速了精密与超精密加工技术的进步。
德国 Braunform Company 图源:公开网络
在中国,系统性地提出超精密加工技术的概念始于20世纪80年代到90年代初期。这一时期,由于航空、航天等军工行业的快速发展,对零部件的加工精度和表面质量提出了更高的要求,促使相关领域进行深入的技术研究。为了满足这些需求,军工行业投入了大量资金,支持国内各研究所和高校开展超精密加工技术的基础研究工作。当时,由于超精密加工技术属于军用领域的前沿科技,国外对中国实施了严格的技术封锁,尤其是在设备和工艺方面。因此,国内的超精密加工技术大多是从自主研发超精密加工设备开始的。超精密加工设备的核心在于高精度的基础元部件,包括空气静压主轴与导轨、液体静压主轴与导轨等关键部件。正是基于这一需求,各研究机构和企业纷纷选择超精密元部件及超精密切削加工用的天然金刚石刀具作为突破口,很快便取得了一些重要进展。例如,哈尔滨工业大学和北京航空精密机械研究所等单位相继研制出了超精密主轴和导轨等元部件,并在天然金刚石超精密切削刀具的刃磨机理及工艺研究上取得了显著成果。同时,这些单位还搭建了一些结构较为简单的超精密加工设备,如超精密车床、超精密镗床等,开始进行超精密切削工艺的实验。
精密超精密加工技术发展趋势
抗疲劳制造技术的发展为超精密加工提供了新方向。超硬材料的精密加工要求严格控制表层损伤和应力状态。例如,航空发动机材料M50NiL的表面硬度超过HRC70,表面处理后的材料性能显著提升。随着单晶涡轮叶盘和涡轮叶片在航空发动机上的应用,以及导弹头罩材料从红外材料向蓝宝石甚至金刚石材料的升级,精密加工技术需要适应更复杂的形状和更高的耐磨性,提出了更高的设备、工艺和检测技术要求。
例如,随着天文望远镜口径的不断扩大,以提高观测范围和清晰度,天文望远镜的口径几乎遵循着类似“摩尔定律”的趋势——每隔若干年,望远镜口径增大一倍。从1917年威尔逊山天文台的Hooker望远镜的2.5米口径,到1948年Hale望远镜的5米,再到1992年建成的Keck望远镜,其口径达到了10米。如今,计划中的OWL望远镜主镜口径将达到100米,由3048块六边形反射镜组成。按照现有的加工技术,完成这样庞大的项目可能需要上百年。同样,激光核聚变点火装置(NIF)所需的7000多块KDP晶体的制造,如果没有高效的超精密加工技术,也将难以完成。
因此,超精密加工技术正面临新的挑战,必须开发更先进的设备和工艺,以满足高效加工的需求。这一技术将继续朝着更极致的精度和效率方向发展,以应对未来更复杂的加工任务。
超精密加工技术将向极致方向发展
随着科技的进步,对超精密加工技术提出了更高的要求,包括对超大零件、微小零件及特征、复杂环境和复杂结构的极高精度要求。例如,欧洲南方天文台正在研制的VLT反射镜直径达8.2米,厚度为200毫米,尽管采用了减重设计,其重量仍达到21吨。由法国REOSC公司负责加工,使用了铣磨和小磨头抛光等技术,整个加工周期为8到9个月,最终达到了设计要求。如今,新的超精密加工工艺,如应力盘抛光、磁流变抛光和离子束抛光等,为大镜的加工提供了重要技术支持。
微纳结构的功能表面也要求极高的加工精度。例如,微惯性传感器中的敏感元件挠性臂,其特征尺寸为9微米,尺寸精度要求达到±1微米,体现了对极小尺寸零件的高精度要求。
美国国家标准计量局开发的纳米三坐标测量机(分子测量机)展示了在极复杂环境下实现高精度测量的典型案例。该仪器的测量范围为50mm×50mm×100μm,精度达到1纳米,对环境的控制极其严格,如最内层壳体的温度需控制在17±0.01℃,并采用多层隔振与高真空环境来减少干扰。
自由曲面光学零件因其卓越的光学性能,近年来应用范围不断扩大。然而,由于其形状复杂且有时无法通过方程表示,设计、制造和检测等技术仍有待进一步突破,以满足日益增长的需求。
第八届国际碳材料大会暨产业展览会
扫码,立即预报名,了解详情
Carbontech 2024 W1馆部分参展企业:
说明:本文部分素材来自网络公开信息,由作者重新编写,转载请备注来源,本平台发布仅为了传达一种不同视角,不代表对该观点赞同或支持。