高温循环下商用大容量磷酸铁锂|石墨电池性能衰减机理研究

锂电联盟会长 2024-09-24 09:02

点击左上角“锂电联盟会长”,即可关注!

高温循环下商用大容量磷酸铁锂|石墨电池性能衰减机理研究

01 研究概述

    碳达峰、碳中和的重大战略决策持续推动着锂离子电池应用场景向多元化、丰富化发展。其中,由于助力充电提速等功能需求日益攀升,锂离子电池面临的高温应用场景与日俱增。在高温环境下,电池性能会加速衰减,从而导致其服役时长缩短,甚至可能加剧安全风险。为进一步优化电池管理策略、提高电池管理可靠性,深入了解高温循环下的锂离子电池老化机理至关重要。现有相关机理研究主要集中于定性分析,系统性非定量解析的研究空白仍有待进一步填补。此外,得益于减小非活性材料质量方面的优势,大尺寸大容量电池的应用规模近年来不断扩大以满足各行业高能量密度动力源的需求,然而,目前研究主要关注小容量电池,大容量电池高温老化问题还缺乏充分的机理研究。

    鉴于此,本研究选取商用大容量磷酸铁锂|石墨电池为对象,探究了其在长期高温循环后的失效机理,通过采用一系列原位/非原位表征技术(EIS, X-CT, SEM-EDS, XRD, XPS, TOF-SIMS等),从电芯层级到材料层级实现了系统、定量的解析与诊断。本研究有助于清晰直观地理解锂离子电池在高温循环工况下的老化机理,并为提升电池管理提供理论基础。

摘要图

02 实验方法

    本研究采用标称容量为100 Ah的商用方壳磷酸铁锂|石墨电池。实验分三个部分:循环老化测试、无损表征以及破坏性表征测试。老化测试:环境温度分别设为室温(25°C)和45°C,采用CCCV充电—静置—CC放电—静置的循环模式。无损表征:主要进行X-CT扫描与EIS测试。破坏性表征:首先将新电池和循环老化后的电池在氩气手套箱中拆解;收集电解质并通过IC进行分析;通过SEM获取电极、隔膜形貌变化;采用EDS探测分布在电极/隔膜表面与断面的元素;ICP-OES用于进一步确定电极元素组成;通过压汞法测量各组件孔隙率;XRD用于研究电极活性材料结构变化以及负极材料石墨化度演变;对电极粉末进行激光粒度分析;XPS用于研究电极表面组分;采用TOF-SIMS定量表征正极CEI膜和负极SEI膜厚度。

03 结果与分析

    25℃环境下容量衰减几乎呈线性,而45℃下容量呈对数函数状衰减(详见原文图1)。在温和环境下,正极一般不会显著老化,容量衰减主要与SEI膜演变引起的活性锂损耗LLI有关。老化机理可能因温度上升有变,而衰减路径亦随之改变。为深入分析温升对老化的影响,结合一系列无损以及破坏性表征测试,将45℃循环老化后的电池与新电池相应特性逐一对比分析。

    在拆解之前进行X-CT扫描。与图1(a)新电池相比,高温循环后卷芯两侧与外壳之间存在明显间隙,如图1(b)所示。由此可推断电池在循环过程中产生了较多气体,这主要由于在较高温度下,内部电解质分解、SEI膜分解等副反应加剧。老化后电池内部结构没有其他明显变化。此外,进行了EIS测试以监测内部电化学动力学演变情况。EIS拟合等效电路见原文图S1,拟合结果见原文表1。高温老化后电池欧姆电阻R0增幅最大,认为主要与体积膨胀、电解液损失有关,导致粘结剂、电极颗粒与电解液之间电阻增加。而高温下SEI膜不够稳定、易分解的特性导致其在循环过程中会重新生长,逐渐趋于更稳定、厚度相应增加,因而老化后RSEI有所增大,本质上反映了锂离子更难迁移通过SEI膜。此外,SEI膜再生不断消耗电解液、隔膜上沉积物堵塞了部分孔隙,均使得电解液中锂离子迁移更困难,进而导致传荷阻抗Rct增幅较大。

图1  X-CT扫描结果
    观察正极和负极SEM图像(见原文图3),与未循环正极相比,老化后LFP颗粒表面出现有明显裂纹,较大的LFP颗粒较易断裂,裂纹在断面上尤为明显。老化后负极表面形貌与未循环的相比没有太大差异。据EDS检测结果,老化负极表面O和F的质量百分比显著增加,与石墨表面存在富O/ F的Li2CO3和LiF等SEI膜组分有关。高温削弱了SEI膜的稳定性,薄膜在循环早期不断分解、重生,因而消耗了一定电解质成分,这也是导致早期容量快速下降的主要因素。后期SEI膜逐渐趋于稳定、致密,LLI同时趋于稳定,对应实际的对数函数式衰减过程。此外,石墨负极表面以及断面SEM均未见明显锂沉积。  
    隔膜SEM-EDS表征结果如图2所示。相较于图2(a) (c)的新隔膜,图2(b) (d)中循环后的隔膜两面几乎完全被球形颗粒覆盖。同时,由于团聚,颗粒尺寸有所增大,可能导致部分隔膜孔隙堵塞,进一步阻碍离子迁移。根据图2(h) EDS表征结果,隔膜分布有Fe元素,证明了Fe从LFP正极溶解并迁移至隔膜。如前所述,较大的LFP颗粒在高温深度循环中易发生断裂,如此,更多新鲜的LFP表面会暴露在电解质中,加剧了正极Fe元素溶解。
图2  隔膜SEM-EDS表征结果
    使用压汞法进行各组件的孔隙率测定,测量结果如图3所示。老化后隔膜孔隙率与新隔膜相比变化不大。正极孔隙率由39.30%下降到36.25%,由于正极厚度有所增加,推测其孔隙率减小与高温循环后颗粒膨胀有关。此外,表面CEI膜生长也会导致正极孔隙率降低。负极孔隙率从46.22%下降到40.11%,主要归因于SEI膜不断生长、增厚。
图3  负极/正极/隔膜孔隙率测定结果
    基于ICP-OES进一步确定负极元素组成,选取Li、Fe、P、Cu四种元素进行检测,测量结果见原文表3。老化后负极锂含量增加了33.44%,如前所述该LLI主要源于SEI膜生长增厚(表面/断面SEM均未见析锂)。通过ICP-OES检测到Fe元素存在于老化负极,而新负极上没有Fe。可以说明,从LFP溶解的部分Fe元素通过隔膜迁移至负极。Fe沉积会通过促进电子输运来加速负极SEI膜生长。同时,金属团簇会阻塞石墨,限制部分锂的正常嵌入,造成一定容量损失。因此,LFP正极衰减对加速全电池老化的影响不可忽视。正极表面Fe沉积可能不均匀,这也是之前负极表面EDS表征没有发现Fe的原因。此外,老化负极Cu含量约为新负极两倍,可推断Cu集流器存在一定程度溶解,在深度放电过程中,负极电位逐渐升高,当负极电位高于3V vs. Li/Li+时,Cu集电极会溶解,高温可能会加剧其溶解。
    如图4所示,根据XRD表征结果,正、负极活性材料结构都未发生明显变化。同时,对负极活性材料进行石墨化度表征,基于Mering-Maire公式计算得出石墨化度由94.42%下降到93.02%,说明老化之后内部动力学性能略微有所下降。
图4  XRD表征结果
    如图5所示,对比正极老化前后XPS结果,在O 1s光谱中观察到PO4含量略有降低,表明CEI膜在老化后略微增厚。根据C-C/ C-H(C 1s) 和 C-O (O 1s)变化,可发现有机物含量有所增加。无机物,例如Li2CO3(C 1s)有所减少,而LiF(F 1s)含量有所增加,表明CEI膜各组分含量在老化后有所变化。同时,金属氧化物(O 1s)含量略有上升,可能与LFP正极表面Fe溶解以及随后的氧化有关。关于负极,LixC6(C 1s)含量大幅降低,和表面膜增厚有关。此外,对于老化后的负极,部分有机物含量明显降低,无机物含量如Li2CO3和LiF几乎不变,表明老化后SEI膜成分分布并不均匀。
图5  XPS表征结果
    为定量了解CEI膜和SEI膜增厚情况,分别对正、负极进行了TOF-SIMS深度刻蚀。在刻蚀过程中,随着CEI膜/SEI膜从颗粒表面被去除,代表着活性材料的某些离子含量会逐渐上升。当颗粒表面膜完全被去除时,离子含量将趋于稳定。基于该原理,CEI膜或SEI膜厚度可用相应离子含量曲线的拐点出现时刻进行表征。Fe+2和 PO3−作为正极材料的代表组分,而C作为负极代表组分。深度刻蚀测试结果可见原文图S3-S6。根据测试结果可发现:老化后正极CEI“厚度”由18 s增加至22 s,膜厚增幅不大,与XPS结果相符。而负极SEI膜“厚度”由18 s增加至300 s,也与相应的XPS结果相符。SEI膜厚度显著增加主要和45℃偏高的循环温度有关,高温加剧了SEI膜生长。

04 主要结论

    本研究分析了大容量磷酸铁锂|石墨电池高温循环下的性能衰减机理,发现环境温度对电池老化的影响不可忽略。室温循环下容量衰减几乎呈线性,而在45℃下容量呈对数式衰减得更快。当衰减至标称值的90%时,高温工况不满500次循环,而室温工况长达1300多次循环。通过采用一系列先进原位/非原位表征技术,进行了系统定量的解析与诊断。主要结论可归纳如下:(1) 电解质分解导致产气以及体积膨胀明显;其中与SEI膜生长相关的电解质消耗会同时引发活性锂的不可逆损耗。(2) 较大尺寸的LiFePO4颗粒易破裂,Fe元素会溶出;Fe元素在负极的沉积会加剧SEI膜生长,且会阻塞石墨并限制部分锂嵌入。(3) 通过TOF-SIMS深度刻蚀发现:正极CEI膜增厚较少;负极SEI膜增厚较为严重,导致老化后负极孔隙率由46.22%降至40.11%。

文章信息

Yuli Zhu, Jiangong Zhu, Bo Jiang, Xueyuan Wang, Xuezhe Wei, Haifeng Dai. Insights on the Degradation Mechanism for Large Format Prismatic Graphite/LiFePO4 Battery Cycled under Elevated Temperature, Journal of Energy Storage, 60, 2023, 106624.

https://doi.org/10.1016/j.est.2023.106624


锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 75浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 71浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 70浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 101浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 52浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 86浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 41浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 105浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 45浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦