【中国汽车线控技术专家委员会】汽车线控驱动技术分析|50+篇线控文章

智享新汽车 2024-09-23 13:12

媒体运营知识付费产业合作咨询服务

50万+汽车爱好者都在关注的公众号 


今日推荐
↓↓↓
点击下方链接下单
电动汽车智能底盘技术路线图》本路线图主要包括五部分内容:部分重点介绍了汽车底盘技术现状及发展趋势、智能底盘技术范围及基本属性、智能底盘总体路线图;第二部分重点介绍了乘用车智能底盘技术路线图、构型组成要素、控制和冗余;第三部分重点介绍了商用车智能底盘技术路线图、构型组成要素、控制和冗余;第四部分重点介绍了线控制动系统和线控转向系统技术路线图;第五部分重点介绍了智能底盘开发测试平台与标准规范技术路线图。本路线图旨在通过对电动汽车智能底盘关键技术体系的梳理和预判,厘清智能底盘技术的发展方向和关键指标,为实现电动汽车智能底盘产业的快速发展提供有力支撑。如需进入中国汽车线控技术专家委员会微信群,请添加管理员圈圈哥微信GSAuto0001

来源: 汽车人高工@知乎、cdmotor

1 线控驱动系统发展现状


• 针对内燃机汽车,线控油门系统已取代传统油门系统,市面上99%以上的车型都配线控油门系统;


• 针对新能源汽车,目前主流的驱动方案有集中电机驱动和分步电机驱动,目前集中电机驱动方案得到了大量的 应用,但正朝着以轮边和轮毂电机为代表的分布电机驱动形式发展。


集中电机驱动


• 单电机驱动结构主要由电动机、减速器、传动半轴和差速器等结构组成,无需离合器和变速器,因此机舱空间可以压缩到非常小;


• 双电机驱动结构主要由电动机、减速器、传动半轴等结构组成,通过驱动单元来驱动两侧车轮,可以提供较大扭矩,双电机驱动方案一般通过电子程序来控制两轮间的差速来控制转向。


分布电机驱动


• 轮边电机驱动系统通过电机加 减速器组合对驱动轮单独驱动, 且电机不集成在车轮内。电机与固定速比减速器一起安装在车架上,减速器输出轴通过万向节与车轮半轴相连驱动车轮。


• 轮毂电机驱动系统分内转子式与外转子式,外转子式采用低速外转子电机,无减速装置,车轮的转速与电机相同;内转子式则采用高速内转子电机, 在电机与车轮之间配备固定传 动比的减速器。


2 线控驱动系统结构


• 线控油门系统由油门踏板、踏板位移传感器、电控单元、数据总线、伺服电动机和节气门执行机构组成;


• 线控驱动系统由电子控制单元(ECU)、功率转换器、驱动电机、机械传动系统、驱动轮等组成。


线控油门系统结构


• 线控油门系统是通过ECU来调整节气门的,其油门踏板产生的位移数 据汇总到ECU,以前单纯的以踏板力度控制的节气门变成了由数据计算后给出的优化好的节气门开合度,从而提高的燃油经济性。


线控驱动系统结构



• 纯电动汽车的总体结构与传统汽车基本一致,只是在动力驱动、能源储存与供给等关键系统、关键部件上与传统汽车有着极大的区别。


• 针对新能源汽车的线控驱动系统结构主要分为集中式驱动、中央传动驱动及分布式驱动三种类型。目前,电驱 动桥技术、轮边减速驱动、轮毂电机直接驱动技术是主流结构。




3 线控驱动工作原理


• 线控油门是通过电缆或线束来控制节气门的开度,从表面看是用电缆取代了传统的油门拉线,但实质上不仅仅 是简单的改变连接方式,而是能对整个车辆的动力输出实现自动控制功能 。



• 当驾驶员需要加速时踩下油门,踏板位置传感器就将感知的信号通过电缆传递给 ECU,ECU根据此位置信号判断驾驶员的驾车意图,并参考发动机转速传感器、进 气压力传感器及其他相关传感器的电信号,得到最佳的节气门开度参数,然后与当 前节气门位置进行比较,当节气门的开度与最佳开度参数不一致时,便输出控制信 号,控制节气门驱动电机工作,将节气门调整到目标开度。



• 纯电动汽车的驱动控制通过嵌入到整车控制器中的控制策略程序来实现,根据各传感器输入信号判断车辆所处 的工况并决策各工况下驱动电机的目标转矩,然后通过CAN总线将目标值发送给电机控制器(MCU),电机 控制器根据接收到的命令对电机进行控制,以保证车辆的正常行驶。



• 针对整车控制器,控制策略的输入信号有加速踏板开度、制动踏板开度、实际挡位、车速、电机转速、电机转矩以及电池SOC信号等,这些信号 经过处理后经由CAN总线传入整车控制器,为驱动控制策略的判断和运 算提供依据。




• 整车控制器输出扭矩指令信号给到电机控制器MCU,电机控制器 MCU输出电机的实际扭矩;为确保扭矩安全,根据能量守恒原理, 利用电机控制器的有功输出平衡原理,实现电机实际扭矩输出的监 控。电机控制器MCU控制算法为转子磁链定向矢量控制方式。


4 线控驱动系统特点分析


• 线控油门系统相比传统机械油门系统,不但系统质量轻,还可以和油压、发动机温度和废气再循环等信息更密 切的结合,有助减少耗油量和废气排出;


• 线控驱动系统分为集中式驱动和分布式驱动两种,这两个系统各有优缺点。


•线控油门驱动优点:

(1)减少了机械组合 零件,系统质量更轻;

(2)可以和油压、 发动机温度和废气再循环等信息有更密切的电子信号结合,有助减少耗油量和废气 排出;

(3)节气门开度被简化成电子信息,有助于提高各项系统的沟通效率;

缺点:成本更高、有一定延迟效果、可靠 性不如机械式油门。


• 集中式驱动优点:

(1)结构紧凑,便于处 理电机冷却、振动隔振以及电磁干扰等问 题;

(2)整车总布置型式与内燃机接近, 前舱热管理、隔声处理以及碰撞安全性与原车接近或者容易处理。

缺点:通常要求使用高转速大功率电机, 对电机性能要求高,也具有传动链长,传动效率低的缺点。


• 分布式驱动

优点:

(1)整车布置的灵活性和车身造型设计的自由度增大,易于实现同底盘不同造型产品的多样化;

(2)机械传动系统部分减少或全部取消,可简化驱动系统;

(3)电机驱动力矩响应迅速,正反转灵活切 换,驱动力矩瞬时响应快,恶劣工况的适应 能力强;

(4)更容易实现电气制动、机电复 合制动及再生制动,经济性更高,续驶里程 更长;

(5)在行驶稳定性方面,通过电机力 矩的独立控制,更容易实现对横摆力矩、纵向力矩的控制,从而提高整车的操纵稳定性及行驶安全;

缺点

(1)分布电机驱动为满足各轮运动协调, 对多个电机的同步协调控制要求高;

(2)电机的分散安装布置提出了结构布置、热管理、电磁兼容以及振动控制等多方面的技术难题。



5 L3/L4/L5级别下线控驱动技术


• 随着电动车技术的不断成熟,对电气化零部件要求将日益提升,也正推进线控驱动技术由集中式驱动向分布式 驱动不断发展。目前线控驱动正处于集中式驱动分布的阶段,未来随着自动驾驶及电气化水平的提高,以轮边 和轮毂电机为代表的的分布式驱动技术方案将得到大量应用。



• 在L3/L4级别自动驾驶情况下,新能源汽车线控驱动架构将以中央传统驱动为主。中央传动驱动有四种布置方 式:(1)发动机+后桥电机;(2)发动机+双电机(带发电机);(3)发动机+双电机(不带发电机);(4)发动机+三电机。



• 另外,发动机+双电机/三电机作为电驱动桥技术的另外一种方案,同样通过传统驱动和电动驱动实现四驱运行, 具有前驱、后驱及四驱自动切换、良好的动力性能和弯道操控性能等优点,但技术要求较高且结构非常复杂。



• 双电机全轮驱动技术极大地简化整车结构布局,拥有更多的整车布置空间、更好的加速性能和操控体验。然而, 存在的最大的难题主要是对电控系统要求非常高。



• 在L5级别的自动驾驶下,以轮边电机和轮毂电机为代表的分布式驱动形式将成为主流;


• 轮边减速驱动技术高度集成电机、减速器机构及轮毂等部件,具有传动系统简洁、质量轻、传动效率高、爬坡 性能好及能量回收效率高等优点;但是也存在磨损较快、不易散热、噪音大及对电控系统要求高等劣势。



• 轮毂电机驱动最大特点是动力、传动、制动系统的高度集成,具有底盘结构大幅简化、应用车型范围广、传动 效率最高等特性。但是受制于技术成熟度的影响,目前存在车辆稳定性不足、复杂环境下使用面临散热、抗震 等诸多挑战。



免责声明:文中部分图片和内容来源希迈汽车底盘,由车咖妹编辑排版,如需转载请添加车咖君微信【GSAuto0001】申请授权转载,未经授权转载或者抄袭,车咖测评团队将保留法律追究的责任。车咖测评技术团队已开通车型定制解读和购车咨询服务项目,如有需求请添加车咖君微信【GSAuto0001】沟通。

大家都在看

【中国汽车线控技术专家委员会】底盘构造详解及新发展

【中国汽车线控技术专家委员会】线控转向--自动驾驶路径与方向的精确控制|50+篇线控文章

【中国汽车线控技术专家委员会】基于EHB 的坡道起步辅助策略开发

【中国汽车线控技术专家委员会】智能底盘:CDC半主动悬架

【中国汽车线控技术专家委员会】线控油门的构成及优劣势

【中国汽车线控技术专家委员会】汽车滑板底盘技术体系研究

【中国汽车线控技术专家委员会】汽车六大悬架位置示意图、结构图、优缺点对比

【中国汽车线控技术专家委员会】一文了解什么是ESC系统

【中国汽车线控技术专家委员会】线控制动系统关键技术解析

【中国汽车线控技术专家委员会】悬架系列——电磁悬架

【中国汽车线控技术专家委员会】车辆EPB系统结构及功能介绍

【中国汽车线控技术专家委员会】浮动式制动卡钳降低拖滞力矩的有效措施

【中国汽车线控技术专家委员会】什么样的转向系统才能满足自动驾驶的需求?

【中国汽车线控技术专家委员会】未来几年,国内线控制动销量将突破1000万套

【中国汽车线控技术专家委员会】浅析新能源汽车的“线控转向系统”

【中国汽车线控技术专家委员会】理想魔毯空气悬架2.0

【中国汽车线控技术专家委员会】常见几种主动悬架系统设置方法

【中国汽车线控技术专家委员会】|50+篇线控文章

【中国汽车线控技术专家委员会】常见几种主动悬架系统设置方法

【中国汽车线控技术专家委员会】常见几种主动悬架系统设置方法

【中国汽车线控技术专家委员会】智能底盘:CDC半主动悬架

【中国汽车线控技术专家委员会】2024汽车空气悬架行业研究报告:高附加值集成部件,国产替代新蓝海

【中国汽车线控技术专家委员会】EPS 电机行业篇,助推汽车转向系统加速发展

【中国汽车线控技术专家委员会】基于线控电子液压制动系统的车辆减速度控制

【中国汽车线控技术专家委员会】主动/半主动悬架应用与研究

【中国汽车线控技术专家委员会】电动汽车制动能量回收控制系统和策略研究

【中国汽车线控技术专家委员会】EPS 电机行业篇,助推汽车转向系统加速发展

【中国汽车线控技术专家委员会】汽车线控制动two-box方案

【中国汽车线控技术专家委员会】国产化持续加速,国内车企空气悬架渗透率逐渐提升

【中国汽车线控技术专家委员会】浅谈车身电子稳定系统ESP

【中国汽车线控技术专家委员会】线控制动有哪些类型?都有什么优缺点?

【中国汽车线控技术专家委员会】智能驾驶对One-box方案的安全要求

【中国汽车线控技术专家委员会】液压制动的终结-电子机械制动(EMB)技术分析

【中国汽车线控技术专家委员会】EPS电动助力转向简介及关键参数计算

【中国汽车线控技术专家委员会】智能IPB制动系统的结构与应用

【中国汽车线控技术专家委员会】基于专利视角的滑板底盘技术发展研究

【中国汽车线控技术专家委员会】汽车线控转向系统控制研究

【中国汽车线控技术专家委员会】EMB方案加速落地,本土企业有望迎量产先发优势

【中国汽车线控技术专家委员会】汽车滑板底盘技术体系研究

【中国汽车线控技术专家委员会】空气悬架的设计与开发经验分享

【中国汽车线控技术专家委员会】汽车后轮转向的发展及分类介绍

【中国汽车线控技术专家委员会】全面解析制动跑偏现象

【中国汽车线控技术专家委员会】EMB系统应用及关键技术分析

【中国汽车线控技术专家委员会】线控悬架系统分析

【中国汽车线控技术专家委员会】五万字读懂汽车线控制动系统

【中国汽车线控技术专家委员会】空气悬架和电磁悬架有何不同?

【中国汽车线控技术专家委员会】浅析轮毂电机(附国内外研究进展)

【中国汽车线控技术专家委员会】一文读懂滑板底盘

【中国汽车线控技术专家委员会】国内自主研发底盘技术最全盘点

【中国汽车线控技术专家委员会】底盘芯片解决方案

【中国汽车线控技术专家委员会】一文熟悉汽车底盘性能开发

【中国汽车线控技术专家委员会】悬架系列——液压悬架

【中国汽车线控技术专家委员会】智能网联汽车底盘线控技术介绍

【中国汽车线控技术专家委员会】线控转向--自动驾驶路径与方向的精确控制

【中国汽车线控技术专家委员会】EMB(电子机械制动)关键技术解析

【中国汽车线控技术专家委员会】线控制动-智驾底盘系统的明珠

【中国汽车线控技术专家委员会】奥迪悬架技术五大黑科技盘点(附视频)

【中国汽车线控技术专家委员会】浅析新能源汽车的线控转向系统

【中国汽车线控技术专家委员会】一文读懂汽车制动系统的前世今生

【中国汽车线控技术专家委员会】汽车后轮转向的发展及分类介绍

【中国汽车线控技术专家委员会】EMB夹紧力控制与传感器故障诊断研究进展

【中国汽车线控技术专家委员会】液压制动的或将终结-电子机械制动(EMB)技术分析

【中国汽车线控技术专家委员会】国外线控制动技术现状及趋势综述

【中国汽车线控技术专家委员会】校友企业推荐-炯熠电子(电子机械制动-EMB)

【中国汽车线控技术专家委员会】汽车后轮转向的“前世与今生”

【中国汽车线控技术专家委员会】Stellantis 获得后轮转向系统专利

【中国汽车线控技术专家委员会】京西集团与蒂森克虏伯转向携手开发EMB

【中国汽车线控技术专家委员会】智己汽车全球首发“智慧数字底盘”

【中国汽车线控技术专家委员会】特斯拉、小鹏、蔚来、理想新能源汽车底盘对比分析

【中国汽车线控技术专家委员会】一文带你了解何为汽车“底盘”、“平台”、“架构”

【中国汽车线控技术专家委员会】汽车产品平台化模块化开发模式与实施策略

【中国汽车线控技术专家委员会】CMA/BMA/SPA/SEA傻傻分不清? 一文读懂吉利的模块化造车架构

【中国汽车线控技术专家委员会】华为途灵智能底盘技术解析

【中国汽车线控技术专家委员会】汽车电子驻车制动系统-EPB

【中国汽车线控技术专家委员会】一文熟悉汽车底盘性能开发

【中国汽车线控技术专家委员会】汽车底盘——驻车制动系统

【中国汽车线控技术专家委员会】线控底盘技术解读

【中国汽车线控技术专家委员会】智能网联汽车底盘线控技术介绍

【中国汽车线控技术专家委员会】浅析汽车四轮定位

【中国汽车线控技术专家委员会】从Rivian看滑板底盘的发展进程:锋芒已露,可圈可点

【中国汽车线控技术专家委员会】汽车线控制动two-box方案

【中国汽车线控技术专家委员会】汽车后轮转向的工作原理介绍

【中国汽车线控技术专家委员会】汽车后轮转向的工作原理介绍

【中国汽车线控技术专家委员会】汽车线控制动技术

【中国汽车线控技术专家委员会】EMB线控制动

【中国汽车线控技术专家委员会】线控转向--自动驾驶路径与方向的精确控制

【中国汽车线控技术专家委员会】制动系统设计开发流程

【中国汽车线控技术专家委员会】一文带你了解何为汽车“底盘”、“平台”、“架构”

【中国汽车线控技术专家委员会】智能线控底盘全产业链解析

【中国汽车线控技术专家委员会】一文读懂智能汽车滑板底盘

【中国汽车线控技术专家委员会】底盘线控悬架智能化趋势

【中国汽车线控技术专家委员会】汽车转向系统开发思路

【中国汽车线控技术专家委员会】一文了解汽车线控制动技术

【中国汽车线控技术专家委员会】鼓刹还是盘刹?汽车制动器刹车原理及发展方向

【中国汽车线控技术专家委员会】新型高效的悬架架构设计方法

【中国汽车线控技术专家委员会】EPS电动助力转向简介及关键参数计算

【中国汽车线控技术专家委员会】EMB夹紧力控制与传感器故障诊断研究进展

【中国汽车线控技术专家委员会】汽车底盘线控技术介绍!(全面)

【中国汽车线控技术专家委员会】自适应悬架-减振器技术路线介绍

【中国汽车线控技术专家委员会】智能底盘——迈向高阶智驾的基石

【中国汽车线控技术专家委员会】汽车线控转向系统控制研究

【中国汽车线控技术专家委员会】汽车制动系统之——盘式制动器

【中国汽车线控技术专家委员会】线控底盘技术之线控转向技术

【中国汽车线控技术专家委员会】新能源汽车制动系统解析

【中国汽车线控技术专家委员会】汽车前后悬架系统的模块化应用

【中国汽车线控技术专家委员会】基于自动驾驶的线控底盘技术现状和发展趋势

【中国汽车线控技术专家委员会】蔚来4D智能底盘技术解析

【中国汽车线控技术专家委员会】馈能式半主动悬架振动自适应最优容错控制

【中国汽车线控技术专家委员会】浅析智能汽车底盘域

【中国汽车线控技术专家委员会】自动驾驶线控转向系统梳理

【中国汽车线控技术专家委员会】液压制动的或将终结-电子机械制动(EMB)技术分析

【中国汽车线控技术专家委员会】线控大脑与线控底盘集成分析

【中国汽车线控技术专家委员会】一文解析自动驾驶的线控底盘技术

【中国汽车线控技术专家委员会】线控制动系统关键技术解析

【中国汽车线控技术专家委员会】浅析空气悬架的设计

【中国汽车线控技术专家委员会】深度解读悬架选型及前后布置技术

【中国汽车线控技术专家委员会】新能源汽车线控转向技术介绍

【中国汽车线控技术专家委员会】蔚来行政旗舰轿ET9的智能线控底盘技术

【中国汽车线控技术专家委员会】线控制动技术路线图

【中国汽车线控技术专家委员会】解析宝马摩托车后轮转向系统专利技术

【中国汽车线控技术专家委员会】汽车后轮转向的工作原理介绍及量产情况
【中国汽车线控技术专家委员会】转向节工艺的秘诀:集中起来,别分散

【智能座舱】2023年汽车智能化系列报告之智能驾驶域控制器篇|46页PDF可下载

【中国汽车线控技术专家委员会】史上最全EPS分类介绍

【中国汽车线控技术专家委员会】线控转向汽车路感控制策略

【智能驾驶】2023特斯拉FSD自动驾驶方案深度解析-德邦证券|53页PDF限时下载

【中国汽车线控技术专家委员会】线控底盘技术解读

【中国汽车线控技术专家委员会】特斯拉、小鹏、蔚来、理想新能源汽车底盘对比分析

【中国汽车线控技术专家委员会】汽车底盘系统开发流程讲解

【中国汽车线控技术专家委员会】底盘域控制器解决方案及产品开发探讨

——关注“智能车产业库”,分享更多精彩干货文章!


免费投稿请发送邮件到:gearshare@163.com

(欢迎行业内人士踊跃投稿,将你们的文章分享给大家)

加入中国电动汽车智能核心技术知识星球,获取汽车行业海量干货

我知道你在看

智享新汽车 汽车新四化专业资讯及干货分享平台
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 138浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 347浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 260浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 182浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 109浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 204浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 180浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 40浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 137浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 278浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 143浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 230浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 115浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 604浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦