9月19日,华为副董事长、轮值董事长徐直军在2024华为全联接大会上发表了题为《拥抱全面智能化时代》的演讲。他表示,AI技术的持续进步正在推动各行各业智能化不断深化,走向全面智能化。但不是每个企业都需要建设大规模AI算力、都要训练自己的基础大模型,也不是所有的应用都要追求“大模型”。
全文如下:
拥抱全面智能化时代
——徐直军在华为全联接大会2024上的主题发言
AI成为对行业影响最大的技术
憧憬智能时代的企业
第二个A回答的是企业将需要打造怎样的产品。我们认为是Auto-Evolving Products,自演进产品;是指:智能化时代的产品将具备自主学习,持续迭代,适应变化的能力,能够自优化和自演进,比如自动驾驶汽车,越开越好开。产品从产品数字化到产品智能化是一次跃迁,将极大改变竞争,每个企业都需要思考把智能化能力融入自己的产品。
第三个A回答的是企业日常运营的未来,即Autonomous Operation,自治的运营;是指,要实现业务流高度自治运营,从感知、规划、决策到执行,端到端自主闭环。比如港口通过智能计划平台,自动生成作业计划,通过自动驾驶集卡自动完成集装箱水平运输。企业运营自动化是多年以来很多企业一直在追求的,运营的自治化是运营效率提升的一次跃迁,每个企业都需要思考在更广、更深的范围用AI赋能和改变企业运营。
第四个A回答的是员工工作体验和工作方式的未来,即Augmented Workforce,增强的员工;是指,要让每个员工都有一个“懂我”的智能助手,高效、高质量完成每一件工作。比如运营商基站现场维护人员通过维护助手APP快速获取故障位置,故障根因以及处理建议等信息。让AI造福于人类是AI存在的意义,让员工有更好的工作体验是每个企业在智能化时代竞争力的关键基础。
接下来2个A,表征的是智能化的基础。第五个A,即All-Connected Resources,全量全要素全联接;是指,要实现企业的资产、员工、客户、伙伴、生态等全互联,所有业务对象、过程、规则实现数字化,不仅要提升信息的量,更要改善信息的质,从而使企业具备智能化必须的数据和信息基础,也就是深度、全面的数字化。
第六个A,即AI-Native Infrastructure,智能原生基础设施;是指,一方面,ICT基础设施要系统化构建,要能适应智能化应用的需要,即ICT for Intelligence,另一方面,基础设施本身的运维管理和体验保障要充分智能化,即Intelligence for ICT。
这6个A的特征,是我们结合自身实践和理解的初步思考总结,希望对大家思考用好AI有所帮助,供大家参考,希望每个企业都能成为智能化时代的赢家。
推进全面智能化战略
适应全面智能化时代的到来,华为在2023年的HC大会上提出了全面智能化战略。全面智能化战略的涉及面很广,我今天主要就从七个方面,分享我们的思考。
一、通过架构创新,提供可持续算力解决方案
首先谈一下算力,智能化必将是一个长期过程,而算力是智能化的关键基础,过去是,未来也是。因此,智能化的可持续,首先是算力的可持续。而算力是依赖半导体工艺的,但我们必需要面对一个现实,那就是,美国在AI芯片领域对中国的制裁长期不会取消,而中国半导体制造工艺由于也受美国制裁,将在相当长时间处于落后状态,这就意味着我们所能制造的芯片的先进性将受到制约。这是我们打造算力解决方案必需面对的挑战。
立足中国,只有基于实际可获得的芯片制造工艺打造的算力才是长期可持续的,否则是不可持续的。华为看到了挑战,也看到了机会和可能,更激发了我们创新的热情。因为人工智能正在成为主导性算力需求,促使计算系统正在发生结构性变化,需要的是系统算力,而不仅仅是单处理器的算力。这些结构性变化,为我们通过架构性创新,开创出一条自主可持续的计算产业发展道路,提供了机遇。
我们的战略核心就是,充分抓住人工智能变革机遇,基于实际可获得的芯片制造工艺,计算、存储和网络技术协同创新,开创计算架构,打造“超节点+集群”系统算力解决方案,长期持续满足算力需求。
大模型的技术突破大大加速了智能化的进程,一段时间以来,各行各业几乎言必称大模型,纷纷建设AI算力,纷纷训练大模型。这对于华为这样的算力提供商而言,无疑是重大利好。但从长远发展角度考虑,我们始终相信,只有客户的持续成功,才有华为的持续发展。今天就几个问题谈几点想法。
第一、不是每个企业都要建设大规模AI算力。我们都清楚,AI服务器,特别是AI算力集群不同于通用x86服务器,对供电、散热等数据中心机房环境要求极高,且随着大模型越来越大,AI算力也将走向更大规模,而且变化节奏快,AI服务器快速升级换代,数据中心机房面临要么浪费、要么满足不了需求的困境。
其次是,现在业界平均一到两年推出新的AI硬件产品,迭代速度快,相比公有云,企业受限于算力规模小,面对快速变化的大模型,比较难以让每个代际的算力硬件独立完成工作,而是希望多个代际产品混合使用来进行模型训练,由此导致资源调度复杂度高,而且因为历史代际产品的“木桶短板”效应,拖累新一代产品性能的充分发挥,影响大模型训练的能力。
最后是运营维护带来的挑战,AI技术还处于成长期,技术变化快,多代际产品共存,对技能要求高,导致运营维护困难,对很多只具备传统IT维护能力的企业而言是重大挑战。由于这些挑战在一段时间内将继续存在,因此,我认为,每个企业都要思考适合自己的获取AI算力的方式,而不仅仅是建设自己的AI算力。
第二、不是每个企业都要训练自己的基础大模型。训练出基础大模型,关键是数据,而准备足够多的高质量数据是很大挑战,基础大模型预训练数据量进入10万亿tokens量级,这对于企业来说,不仅意味着高成本,同时是否能获取到足够的数据量也是挑战。
其次,模型训练难,基础大模型参数量在持续增大,模型迭代和优化难度大,通常需要数月到数年时间完成模型迭代训练。每个企业都应聚焦自身核心业务,自行训练基础大模型会影响AI尽快赋能核心业务。
最后,人才获取难,基础大模型涉及的相关技术每天都在更新,具备实战经验的技术专家少,对于企业来说,建立足够的技术人才资源也是挑战。
第三、不是所有的应用都要追求“大”模型。从华为盘古在行业的实践看,十亿参数模型可以满足科学计算、预测决策等业务场景的需求,比如降雨预测、药物分子优化、工艺参数预测,在PC、手机等端侧设备上,十亿参数模型也有广泛应用。而百亿参数模型可以满足面向NLP、CV、多模态等大量特定领域场景的需求,比如知识问答、代码生成、坐席助手、安全检测。面向NLP、多模态的复杂任务,可以用千亿参数模型来完成。
所以我们认为,企业需要的是根据自身不同业务场景需求,选择最合适的模型,通过多模型组合,解决问题,创造价值。
二、华为云面向AI全栈升级,赋能千行百业智能化
基于我刚讲过的几点想法,我认为,对于很多不具备自建AI算力和自训基础大模型能力的企业来讲,选择云服务是更为合理的、可持续的选择。华为云也针对这些挑战,面向AI,对全栈进行了升级,致力于让每个企业都能按需、高效地训练模型和应用模型推理。
首先华为云通过持续打造昇腾云服务,让企业一键获取澎湃AI算力,无需改造或自建机房,无需运营维护AI算力基础设施;同时通过计算、存储、网络端到端协同,已经实现千亿参数模型云上训练40天无中断。
其次华为云升级了ModelArts服务,支持业界主流基础大模型开箱即用,包括盘古、开源、以及第三方大模型,让企业无需为基础大模型准备大量数据和迭代训练,并提供一站式模型调优、部署、测评等工具链支持,降低企业模型微调和增量训练的技术门槛。
同时华为云在全力打造盘古5.0,支持全系列模型,包括十亿级、百亿级、千亿级等,最佳适配企业不同场景需求,并通过百模千态社区提供100多个大模型,为企业提供更丰富的选择。概括讲,我认为云服务是很多企业推进智能化的最佳选择。通过华为云昇腾云服务和模型云服务,我们期望让每个企业都能实时按需获取AI算力,以及高效地训练模型和应用模型推理。
华为云提供体系化安全能力
保障大模型训练推理安全
在云上进行大模型的训练和推理,带来新的安全挑战,华为云为了应对这些新的安全挑战,大力提升了安全能力,保障大模型训练推理安全,主要包括:
在安全理念方面,华为云面向“防御极限攻击”的理念来进行安全设计,基于零信任构筑了物理、身份、网络、应用、主机、数据、运维七层防线和一个安全运营中心,每天成功抵御高达12亿次的攻击,确保业务“攻击不瘫,数据不丢,监管合规”。
在安全机制方面,华为云提供等级云为客户构建了安全的数字空间,支持物理隔离或逻辑隔离,云平台的操作透明可审计,确保客户安心用云。
在安全技术上,华为云提供端到端的全栈数据安全保护方案,从硬件,软件,应用对数据全生命周期,以及数据流转、大模型训练和推理数据,进行全方位安全防护。同时确保训练数据、生成内容的端到端安全合规。
在知识产权方面,如果客户使用华为云大模型服务,生成的内容侵犯了第三方的知识产权,华为将自费为客户辩护,并就最终法院判决或与第三方的和解给您造成的损失、成本和费用进行赔偿。具体内容以合同约定为准。
三、构建鸿蒙原生智能,打造全场景智慧体验
智能时代,终端是不可或缺的一环。在终端领域,华为是最早把AI引入到智能手机的,早在2017年,华为推出的Mate10,就内置了AI芯片,并将AI智慧影像、AI翻译等能力首次应用到了手机,开启了Mobile AI时代。而今天,随着AI进入大模型时代,我们基于端、芯、云协同的架构,把AI技术与鸿蒙操作系统深度融合,重新构建了以AI为中心的鸿蒙原生智能,从内核到系统应用实现全面智能化,同时实现更开放的生态协作,以及更可信的隐私安全保护。
华为将基于鸿蒙原生智能,将“小艺”升级为智能体,实现更自然的多模态交互,更全方位的融合感知,准确理解用户、数字世界和物理世界,为用户提供全场景智能化、个性化的服务。同时我们将围绕消费者在工作、学习、生活、娱乐等全场景需求,联合鸿蒙生态伙伴共同构建面向未来产品的智能能力;并且实现从AI模型能力到AI控件分层全面开放,使能第三方应用,繁荣鸿蒙原生应用生态。
而不是以算力为中心
我们也注意到,在各种终端中引入AI能力已经成为普遍的趋势,比如打造AI Phone、AI PC等。由此,关于如何定义AI时代的智能终端,业界也有各种声音。我们始终认为,消费者的体验是第一位的,消费者难以理解芯片工艺、算力TFLOPS、模型参数量…究竟意味着什么,而是更加注重切身的使用体验。
因此,我们倡议,终端AI应以体验为中心,而不是以算力为中心。基于这一理念,为了让消费者对AI终端的能力有更清晰、更直观的认知,同时也为了让产业界对AI终端的能力演进达成统一的共识,协同产业有序发展,我们和清华大学人工智能产业研究院共同提出AI终端智能化L1到L5分级标准,以消费者体验为牵引,将用户的智能体验进行量化,通过持续提升智能等级带给用户更好的体验,期待产业界同仁一起来完善、优化该分级标准。共同促进终端AI的有序发展。
四、以自动驾驶网络,重塑网络体验和运维
在网络领域,华为自2018年起,华为首先提出把AI用于电信网络,提出自动驾驶网络架构。目前我们正在把通信大模型以及网络数字孪生引入进来,与TM Forum、中国移动等业界伙伴一起,推动基于价值场景的高度自治,使能网络逐步实现L4高度自治,未来实现完全自治。其中,通过运营商网络自动驾驶,我们致力于实现零等待、零中断、零接触的极致用户体验,以及自配置、自修复、自优化的极简网络运维。
同时,我们也把自动驾驶网络的理念引入到企业网络,因为企业网络同样面临着运维的挑战,首先全无线化办公,应用云化、视频化,员工办公体验难以全面保障;同时企业办公、生产、数据中心、分支及联接多云等网络规模越来越大,设备种类越来越多,日常维护范围和复杂度持续增大;今天,我们提出,通过企业网络自动驾驶,我们的目标是实现企业业务零卡顿、网络零中断、开通零等待、安全零风险。
五、打造自动驾驶解决方案,以安全和体验为中心,最终实现无人驾驶
汽车自动驾驶解决方案也是华为最开始投资AI的重要领域,因为自动驾驶的目标是无人驾驶,是AI的应用最为挑战的场景之一。我们推出的ADS 3.0版本,能够让自动驾驶决策更准确,通行更高效,体验更类人,驾驶更安全。并且实现了车位到车位 “一键”抵达,从公开道路到园区道路到地下车位的全场景贯通。并且进一步升级全向防碰撞系统,覆盖更多速度区间,以及实现全向避障。
这些进步让消费者真正感受到了智能驾驶带来的安全与体验提升。现在,中国消费者对汽车智能驾驶已经非常熟悉了,购买新车时配智能驾驶高阶版本的比例非常高,汽车的智能驾驶能力也已经成为中国消费者购买新车时重点考虑的因素。下一步,我们将基于融合感知,持续演进自动驾驶解决方案,逐步实现:在高速路,上车即可休息,长途安心睡;在城区和郊区公路,处处都好开,安全稳重比肩老司机;在乡村和山路:上山下乡,全地貌全天候放心开。在泊车场景:实现离车即走、零剐蹭、零卡死;在安全方面要实现全方位全向主动安全,主要是主责碰撞清零,减轻次要责任。在这些关键场景目标达成的基础上,未来最终实现无人驾驶。
六、共筑生态,打造统一的开发者平台,实现共赢发展
发展生态一直是华为战略的重要组成。我们始终努力与伙伴一起共筑生态,打造统一的开发者平台,实现共赢发展。在2017到2019的三年间,华为先后开启了华为云、昇腾、鲲鹏和鸿蒙生态的构建。在2024年及未来五年,华为将强力战略投资生态的发展,通过生态的发展牵引、促进、带动计算产业和终端产业的发展,为世界计算领域提供第二个选择,同时为世界提供第三个移动操作系统。
七、倡导和践行AI向善,增强人类、社会和环境的福祉
最后,AI的应用将无穷无尽,但归根结底是要服务于人的。我们坚持倡导和践行AI向善,我们认为:
AI应服务于人,提高人的工作效率和生活品质;通过AI使能行业数字化,改变行业的生产方式,成为各行业进入智能世界的核心引擎;要降低AI技术的门槛,让每个人、每个家庭、每个组织拥有平等获取和使用AI技术的机会。
AI应运用于为社会创造更广泛的福祉等善意的用途;我们在AI的设计、开发和使用过程中,会审慎评估AI技术对社会带来的长期和潜在影响,避免AI技术滥用。
AI应运用于生态环境保护和可持续发展,积极运用AI来研究、解决全球关注的问题,如联合国可持续发展目标。
全面智能化时代已然来临,给每个人、每个企业带来新的机遇,也有新的挑战,让我们携手共同推进全面智能化,让每个人都有自己专属的智慧助手,让每个企业成为智能化企业,让每辆车都能无人驾驶。谢谢!
工控兄弟连联合创始人张震