基于整车工况的电动汽车动力总成系统效率优化设计方法

电动车千人会 2024-09-22 09:03


发现“分享”“在看”了吗,戳我看看吧

诚邀新能源电驱动行业专家学者及研究人员投稿发文

录用有奖金 投稿邮箱:EVH1000@163.com

本文提出了一种由整车参数和工况要求的电动汽车动力总成设计方法,使电机、电控及减速器的高效区间与整车工况高度重合,有效地提升了动力总成系统的综合效率。通过基于整车工况效率匹配,合理地优化减速比和电机电磁方案,使整个动力总成在满足整车动力性能要求和最高效率基本不变的情况下,达到基于整车NEDC 工况的动力总成效率提升和成本的最优设计。


基于NEDC 工况能耗分析



1.整车参数要求◆




现以某一款车型为例,通过NEDC 工况来对电机进行针对性的优化设计,整车参数见表1。

表1 整车参数





2.NEDC 工况介绍◆




NEDC 工况全称为“新欧洲驾驶周期”,是中国目前现行的国家标准。NEDC 循环工况中,包含4个市区循环和1个市郊区循环(模拟),每个市区循环时长为195 s,包括怠速、起动、加速以及减速停车等几个阶段,最高车速为50 km/h,平均车速为18.35 km/h,最大加速度1.042m/s,平均加速度为0.599m/s。市郊区循环时间400 s,最高车速120 km/h,平均车速62 km/h,最大加速度0.833m/s,平均加速度0.354m/s,其中市区循环的车速较低,郊区循环的车速则较高一些。该工况下整车的时间速度如图1 所示。





3.NEDC 能耗分析方法◆




如何通过NEDC 工况求得各工况点的电机运动特性和能耗是该方法的核心,整车系统的能量传输模型如图2 所示。动力总成系统效率η 是电机控制器效率η 控制器总、电机效率η 电机和减速器效率η 减速器的乘积:

通过整车平衡方程和NEDC 工况,求得对应的每个工况点所需的轮边转矩Tr、轮边转速Nr,再通过图2的能量传输模型可求得对应点的电机运动特性和能耗。通过机车理论可得汽车行驶中的轮边平衡方程:

图1 整车时间速度

图2 能量传输模型

式中,Ft 为驱动力;Ff 为滚动阻力;Fw 为空气阻力;Fy 为坡度阻力;Fj为加速阻力;Ttq 为电机输出转矩;i 为整车转速比;ηT 为减速器效率;r 为轮胎滚动半径;G 为整车质量;f 为滚动阻力系数;α 为整车行驶坡度;CD 为空气阻力系数;A 为整车迎风面积;μa 为整车行驶速度;δ 为汽车旋转质量系数。





4.NEDC 能耗分布◆




根据能耗分析方法,结合整车参数和NEDC 工况,通过Matlab 仿真分析,得到整车能耗分布如图3 所示,并得出结论:①有5个高能耗点(能耗占比>1%),对应的能耗之和占整个NEDC 工况的54.9%,见表2。结合图1,可知这5个点为匀速点,所对应点的转矩值都较小;②在全NEDC 工况转速范围内,86% 的工况点落在轮边转矩50 ~200N·m 范围内。为了便于分析其他点的能耗详细分布情况,剔除5个高能耗点,其余点能耗分布如图4 所示。

结合能耗分析方法,从图4中得出:①43%的工况点的轮边转矩落在100 ~200N·m 内;②在车速25 ~50 km/h 内,单个工况点能耗值较高;③在车速50 ~100 km/h 内,虽然单个点的能耗值较25 ~50 km/h 中的区域小,但点分布更密,因此整个区域的能耗占比也较高。从上面的分析可以得出,要分析NEDC 工况的能耗集中区,要同时考虑能量占比和密集度。考虑到整个NEDC 工况,匀速点只有6个点,而匀速点对应的转矩值又相对较小,为进一步精确分析能耗的分布,将区间进一步简化,将6个匀速点独立出来,将车速平均分为10个区间,能耗占比见表3。从统计数据可知,仅基于NEDC 工况最佳效率匹配,对于本文给定整车参数,电机的高效区间分布有如下规律:①从轮边转矩来看,高效区间应尽量靠近50 ~200N·m 区 间;②从车速来看,高效区间应尽量落在40 ~100 km/h 区间。

表2 高能耗点

图3 NEDC 全工况能耗分布

图 4 剔除NEDC 高能耗工况点的能耗分布


基于整车NEDC工况效率最优的电机电磁方案设计



1.电机高效区间分布特点◆




表3 NEDC 能耗占比分布

从常规电机的效率MAP 图中可以看出,电机效率会有一个集中的高效区间,而这个高效区间的中心一般是电机的额定点。以该高效区间为中心向四周扩展,效率呈现下降。电机损耗分布趋势如图5 所示:在高转矩区铜耗占主要部分,且转矩越大铜耗占比越大;在高速区铁耗占主要部分,且速度越高铁耗占比越大。





2.电机高效区间平移设计方法◆




在满足整车动力性要求的基础上,要使电机的高效区间平移,实际上就是通过改变电机的绕组、磁路参数来调整铜耗和铁耗的占比。如果需要高效区间在低速高矩段,即需要将铜耗设计得较低,根据铜耗理论计算公式I2R 可知需要更低的绕组电阻值,或者提高转子磁场来减小绕组电流,具体方法如下:

1)采用集中绕组设计,缩短电机绕组端部长度,电机绕组电阻R 更小。

2)采用扁线绕组方案,或者其他提高槽满率的工艺,使得绕组铜截面积更大,电机绕组电阻R 更小。

3)采用更大的定子槽设计,能够放置更多的导体数,电机定子绕组电阻R 更小。

4)对于永磁电机,适当提高永磁体牌号,或者增加极弧系数,都可以使转子磁场增加,定子绕组需要的电流I 减小。

如果需要高效区间在高速低矩段,即需要将铁耗设计得较低,根据铁耗理论计算公式P=KB2f2可知需要更低的损耗系数、磁通密度和频率,具体方法如下:

1)采用扁线绕组方案,或者其他提高槽满率的工艺,使得相同绕组铜截面积需要的定子槽更小,定子磁通密度B 可以减小。

2)对于永磁电机适当降低永磁体牌号,或减小极弧系数,都可以使转子磁场强度降低,转子磁通密度B 更小。

3)采用更低极对数的极槽配合,使得频率f 更小。

4)采用更薄的冲片或者损耗系数更小的冲片牌号,使得K更小。





3.基于整车NEDC 工况效率最优的电机电磁方案优化设计党委工作宣传处




根据前面的整车要求,结合电机效率高效区间的分布及平移方法,我们提出了两种电机设计方案,电机参数要求见表4。通过仿真分析得到两个方案的电机效率,分别如图6、图7 所示。

表4 电机参数

图5 电机损耗分布趋势

图6 方案一电机效率MAP 图分布

根据NEDC 能耗分析方法,我们计算出NEDC 工况下方案一和方案二电机的平均效率分别为0.88 和0.91,通过对比分析NEDC 工况各点能耗在MAP中的投影,如图6、图7(蓝色点所示,点越大代表能耗占比越高),可知方案二的高效区间与NEDC 工况能耗分布区吻合得较好,因此在NEDC 工况下电机的效率更高,这说明了由整车参数和NEDC 工况推导出电机高效区间的分布的方法是准确的,为后面基于整车工况效率匹配的动力总成设计提供了依据。

图7 方案二电机效率MAP 图分布


基于整车NEDC 工况效率最优动力总成成本优化设计


参考电机设计,在电机的主要尺寸、功率、转速和电磁负荷之间存在着一定的关系,即满足:

式中,P'为计算功率(W);n为额定转速(r/min);K φ 为气隙磁密波形系数;K dp 为绕组系数,由极槽配合和绕组形式决定;D a为电枢直径(mm);B av 为平均气隙磁密(T);A 为定子电负荷有效值(A/mm);lef 为铁心计算长度(mm)。

由于受整车厂的安装尺寸及定转子冲片模具的限制,一般D a 不会改变,并且在一定功率范围内,对于相同系列的电机,Bav、K φ、Kdp 及A 变化不大,且T ∝P'/n,所以Lef ∝ T。

对同样轮边转矩和转速的要求,速比越大,所需要的电机的转矩T 越小,因此尺寸越小,即电机体积越小。正是就基于此,我们在减速器原中心距不变的情况下,将减速比由6.736 提高到9.28,电机铁心长由110mm 缩短到80mm,其效率如图8 所示,并可得出以下结论:

1)电机的最高效率略有降低,这是因为电机的转速提高,目前的电机长径比并不是最佳值。如果同时改变长径比,电机的最高效率会跟方案二相当,但是在实际设计中,这可能会导致需要重新制作定转子冲片模具,而导致模具费用增加,经济性不佳。

2)电机的高效区间与NEDC 工况能耗分布区吻合度进一步提升,通过计算可得方案三电机的平均效率为0.91,因此NEDC 工况的平均效率基本与方案二一致。在基于NEDC 工况平均效率基本不变的情况下,电机成本下降约20%左右,为以后实际工作中的动力总成成本的优化设计提供了设计方法。

图8 方案三电机效率MAP 图分布

针对整车工况和参数要求,根据汽车理论知识,利用MATLAB程序,编制了一个流程化的小软件(图9),能够快速计算整车工况的能耗分布和平均效率,指导我们进行动力总成的优化设计。

图9 软件运行界面


结论


本文基于整车参数要求和整车工况要求,结合汽车理论知识,提出了一种电动汽车动力总成匹配整车NEDC 工况效率最优的正向设计方法。通过匹配设计使得NEDC 工况下动力总成的平均效率提高了3%,通过对减速器速比的合理优化增大,使得动力总成的成本下降20%,且无需提高减速器、电机及电控等零部件的最高效率。

最后,基于这种方法编制设计软件,该软件可以针对不同整车及工况,快速获得动力系统效率最优的组件参数。




EVH原创文章

1.2024年度日产驱动电机冷却系统简析

2.浅述纯电动汽车VCU核心策略之扭矩控制
3.2024年度永磁同步电机噪音原理及其改善方案概述
4.极致性价比的电驱产品关键技术
5.华为多合一DriveONE电驱动技术


电动车千人会主办的“EVH第七届全球新能源动力总成年会暨千星奖颁奖典礼”将于2024年11月21-11月22日在上海举行。


卧龙电驱集团EV事业本部总工,杨林先生出席并作题为《卧龙电驱的前瞻技术研究》的报告。


演讲嘉宾



扫码报名参会


展台&演讲赞助咨询







扫描二维码|关注我们

●  电动车千人会  ● 






扫码关注智能汽车

●  EVH1000智能汽车  ● 






欢迎加入新能源汽车产业交流群  

关注公众号后台回复关键词“社群

即可获取入群方式

【免责声明】文章为作者独立观点,不代表电动车千人会立场。如因作品内容、版权等存在问题,请于本文刊发30日内联系电动车千人会进行删除或洽谈版权使用事宜

👇👇👇点击阅读原文,报名参加“EVH2024第七届全球新能源动力总成年会”!


电动车千人会 电动车千人会(EVH1000)是电动汽车智慧出行一站式咨询交流服务平台,旨在通过业内千位专家的努力带动下,融合产学研、证推新技术、优整供应链、创提智造力,为推动汽车行业的蓬勃发展奉献力量。电动车千人会通过组局电动车相关的产业评选、行业会议、闭门沙龙、技术培训、技术咨询、出海行业对接等,以加快产业集群化落地及人才综合能力提升。
评论
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 61浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 98浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 65浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 38浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 82浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 77浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦