基于整车工况的电动汽车动力总成系统效率优化设计方法

电动车千人会 2024-09-22 09:03


发现“分享”“在看”了吗,戳我看看吧

诚邀新能源电驱动行业专家学者及研究人员投稿发文

录用有奖金 投稿邮箱:EVH1000@163.com

本文提出了一种由整车参数和工况要求的电动汽车动力总成设计方法,使电机、电控及减速器的高效区间与整车工况高度重合,有效地提升了动力总成系统的综合效率。通过基于整车工况效率匹配,合理地优化减速比和电机电磁方案,使整个动力总成在满足整车动力性能要求和最高效率基本不变的情况下,达到基于整车NEDC 工况的动力总成效率提升和成本的最优设计。


基于NEDC 工况能耗分析



1.整车参数要求◆




现以某一款车型为例,通过NEDC 工况来对电机进行针对性的优化设计,整车参数见表1。

表1 整车参数





2.NEDC 工况介绍◆




NEDC 工况全称为“新欧洲驾驶周期”,是中国目前现行的国家标准。NEDC 循环工况中,包含4个市区循环和1个市郊区循环(模拟),每个市区循环时长为195 s,包括怠速、起动、加速以及减速停车等几个阶段,最高车速为50 km/h,平均车速为18.35 km/h,最大加速度1.042m/s,平均加速度为0.599m/s。市郊区循环时间400 s,最高车速120 km/h,平均车速62 km/h,最大加速度0.833m/s,平均加速度0.354m/s,其中市区循环的车速较低,郊区循环的车速则较高一些。该工况下整车的时间速度如图1 所示。





3.NEDC 能耗分析方法◆




如何通过NEDC 工况求得各工况点的电机运动特性和能耗是该方法的核心,整车系统的能量传输模型如图2 所示。动力总成系统效率η 是电机控制器效率η 控制器总、电机效率η 电机和减速器效率η 减速器的乘积:

通过整车平衡方程和NEDC 工况,求得对应的每个工况点所需的轮边转矩Tr、轮边转速Nr,再通过图2的能量传输模型可求得对应点的电机运动特性和能耗。通过机车理论可得汽车行驶中的轮边平衡方程:

图1 整车时间速度

图2 能量传输模型

式中,Ft 为驱动力;Ff 为滚动阻力;Fw 为空气阻力;Fy 为坡度阻力;Fj为加速阻力;Ttq 为电机输出转矩;i 为整车转速比;ηT 为减速器效率;r 为轮胎滚动半径;G 为整车质量;f 为滚动阻力系数;α 为整车行驶坡度;CD 为空气阻力系数;A 为整车迎风面积;μa 为整车行驶速度;δ 为汽车旋转质量系数。





4.NEDC 能耗分布◆




根据能耗分析方法,结合整车参数和NEDC 工况,通过Matlab 仿真分析,得到整车能耗分布如图3 所示,并得出结论:①有5个高能耗点(能耗占比>1%),对应的能耗之和占整个NEDC 工况的54.9%,见表2。结合图1,可知这5个点为匀速点,所对应点的转矩值都较小;②在全NEDC 工况转速范围内,86% 的工况点落在轮边转矩50 ~200N·m 范围内。为了便于分析其他点的能耗详细分布情况,剔除5个高能耗点,其余点能耗分布如图4 所示。

结合能耗分析方法,从图4中得出:①43%的工况点的轮边转矩落在100 ~200N·m 内;②在车速25 ~50 km/h 内,单个工况点能耗值较高;③在车速50 ~100 km/h 内,虽然单个点的能耗值较25 ~50 km/h 中的区域小,但点分布更密,因此整个区域的能耗占比也较高。从上面的分析可以得出,要分析NEDC 工况的能耗集中区,要同时考虑能量占比和密集度。考虑到整个NEDC 工况,匀速点只有6个点,而匀速点对应的转矩值又相对较小,为进一步精确分析能耗的分布,将区间进一步简化,将6个匀速点独立出来,将车速平均分为10个区间,能耗占比见表3。从统计数据可知,仅基于NEDC 工况最佳效率匹配,对于本文给定整车参数,电机的高效区间分布有如下规律:①从轮边转矩来看,高效区间应尽量靠近50 ~200N·m 区 间;②从车速来看,高效区间应尽量落在40 ~100 km/h 区间。

表2 高能耗点

图3 NEDC 全工况能耗分布

图 4 剔除NEDC 高能耗工况点的能耗分布


基于整车NEDC工况效率最优的电机电磁方案设计



1.电机高效区间分布特点◆




表3 NEDC 能耗占比分布

从常规电机的效率MAP 图中可以看出,电机效率会有一个集中的高效区间,而这个高效区间的中心一般是电机的额定点。以该高效区间为中心向四周扩展,效率呈现下降。电机损耗分布趋势如图5 所示:在高转矩区铜耗占主要部分,且转矩越大铜耗占比越大;在高速区铁耗占主要部分,且速度越高铁耗占比越大。





2.电机高效区间平移设计方法◆




在满足整车动力性要求的基础上,要使电机的高效区间平移,实际上就是通过改变电机的绕组、磁路参数来调整铜耗和铁耗的占比。如果需要高效区间在低速高矩段,即需要将铜耗设计得较低,根据铜耗理论计算公式I2R 可知需要更低的绕组电阻值,或者提高转子磁场来减小绕组电流,具体方法如下:

1)采用集中绕组设计,缩短电机绕组端部长度,电机绕组电阻R 更小。

2)采用扁线绕组方案,或者其他提高槽满率的工艺,使得绕组铜截面积更大,电机绕组电阻R 更小。

3)采用更大的定子槽设计,能够放置更多的导体数,电机定子绕组电阻R 更小。

4)对于永磁电机,适当提高永磁体牌号,或者增加极弧系数,都可以使转子磁场增加,定子绕组需要的电流I 减小。

如果需要高效区间在高速低矩段,即需要将铁耗设计得较低,根据铁耗理论计算公式P=KB2f2可知需要更低的损耗系数、磁通密度和频率,具体方法如下:

1)采用扁线绕组方案,或者其他提高槽满率的工艺,使得相同绕组铜截面积需要的定子槽更小,定子磁通密度B 可以减小。

2)对于永磁电机适当降低永磁体牌号,或减小极弧系数,都可以使转子磁场强度降低,转子磁通密度B 更小。

3)采用更低极对数的极槽配合,使得频率f 更小。

4)采用更薄的冲片或者损耗系数更小的冲片牌号,使得K更小。





3.基于整车NEDC 工况效率最优的电机电磁方案优化设计党委工作宣传处




根据前面的整车要求,结合电机效率高效区间的分布及平移方法,我们提出了两种电机设计方案,电机参数要求见表4。通过仿真分析得到两个方案的电机效率,分别如图6、图7 所示。

表4 电机参数

图5 电机损耗分布趋势

图6 方案一电机效率MAP 图分布

根据NEDC 能耗分析方法,我们计算出NEDC 工况下方案一和方案二电机的平均效率分别为0.88 和0.91,通过对比分析NEDC 工况各点能耗在MAP中的投影,如图6、图7(蓝色点所示,点越大代表能耗占比越高),可知方案二的高效区间与NEDC 工况能耗分布区吻合得较好,因此在NEDC 工况下电机的效率更高,这说明了由整车参数和NEDC 工况推导出电机高效区间的分布的方法是准确的,为后面基于整车工况效率匹配的动力总成设计提供了依据。

图7 方案二电机效率MAP 图分布


基于整车NEDC 工况效率最优动力总成成本优化设计


参考电机设计,在电机的主要尺寸、功率、转速和电磁负荷之间存在着一定的关系,即满足:

式中,P'为计算功率(W);n为额定转速(r/min);K φ 为气隙磁密波形系数;K dp 为绕组系数,由极槽配合和绕组形式决定;D a为电枢直径(mm);B av 为平均气隙磁密(T);A 为定子电负荷有效值(A/mm);lef 为铁心计算长度(mm)。

由于受整车厂的安装尺寸及定转子冲片模具的限制,一般D a 不会改变,并且在一定功率范围内,对于相同系列的电机,Bav、K φ、Kdp 及A 变化不大,且T ∝P'/n,所以Lef ∝ T。

对同样轮边转矩和转速的要求,速比越大,所需要的电机的转矩T 越小,因此尺寸越小,即电机体积越小。正是就基于此,我们在减速器原中心距不变的情况下,将减速比由6.736 提高到9.28,电机铁心长由110mm 缩短到80mm,其效率如图8 所示,并可得出以下结论:

1)电机的最高效率略有降低,这是因为电机的转速提高,目前的电机长径比并不是最佳值。如果同时改变长径比,电机的最高效率会跟方案二相当,但是在实际设计中,这可能会导致需要重新制作定转子冲片模具,而导致模具费用增加,经济性不佳。

2)电机的高效区间与NEDC 工况能耗分布区吻合度进一步提升,通过计算可得方案三电机的平均效率为0.91,因此NEDC 工况的平均效率基本与方案二一致。在基于NEDC 工况平均效率基本不变的情况下,电机成本下降约20%左右,为以后实际工作中的动力总成成本的优化设计提供了设计方法。

图8 方案三电机效率MAP 图分布

针对整车工况和参数要求,根据汽车理论知识,利用MATLAB程序,编制了一个流程化的小软件(图9),能够快速计算整车工况的能耗分布和平均效率,指导我们进行动力总成的优化设计。

图9 软件运行界面


结论


本文基于整车参数要求和整车工况要求,结合汽车理论知识,提出了一种电动汽车动力总成匹配整车NEDC 工况效率最优的正向设计方法。通过匹配设计使得NEDC 工况下动力总成的平均效率提高了3%,通过对减速器速比的合理优化增大,使得动力总成的成本下降20%,且无需提高减速器、电机及电控等零部件的最高效率。

最后,基于这种方法编制设计软件,该软件可以针对不同整车及工况,快速获得动力系统效率最优的组件参数。




EVH原创文章

1.2024年度日产驱动电机冷却系统简析

2.浅述纯电动汽车VCU核心策略之扭矩控制
3.2024年度永磁同步电机噪音原理及其改善方案概述
4.极致性价比的电驱产品关键技术
5.华为多合一DriveONE电驱动技术


电动车千人会主办的“EVH第七届全球新能源动力总成年会暨千星奖颁奖典礼”将于2024年11月21-11月22日在上海举行。


卧龙电驱集团EV事业本部总工,杨林先生出席并作题为《卧龙电驱的前瞻技术研究》的报告。


演讲嘉宾



扫码报名参会


展台&演讲赞助咨询







扫描二维码|关注我们

●  电动车千人会  ● 






扫码关注智能汽车

●  EVH1000智能汽车  ● 






欢迎加入新能源汽车产业交流群  

关注公众号后台回复关键词“社群

即可获取入群方式

【免责声明】文章为作者独立观点,不代表电动车千人会立场。如因作品内容、版权等存在问题,请于本文刊发30日内联系电动车千人会进行删除或洽谈版权使用事宜

👇👇👇点击阅读原文,报名参加“EVH2024第七届全球新能源动力总成年会”!


电动车千人会 电动车千人会(EVH1000)是电动汽车智慧出行一站式咨询交流服务平台,旨在通过业内千位专家的努力带动下,融合产学研、证推新技术、优整供应链、创提智造力,为推动汽车行业的蓬勃发展奉献力量。电动车千人会通过组局电动车相关的产业评选、行业会议、闭门沙龙、技术培训、技术咨询、出海行业对接等,以加快产业集群化落地及人才综合能力提升。
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 70浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦