深度解读E-link——电子墨水屏技术

传感器技术 2020-12-28 00:00

阅读电子书早已成为大家生活中一部分,方便轻巧的电子版书籍更便于携带,而电子阅读器也不仅仅局限于电脑、手机等传统设备,新兴的电子书阅读器渐渐为我们所接受。E-ink电子墨水技术就是现在最著名的产品之一,他的出现让电子书阅读器不再是液晶屏幕一家独大


提起E-ink电子墨水屏,大家第一时间反应就是“哦,就是那个只能显示黑白灰的屏幕是吧,亚马逊kindle电子书就是用这个的”。

 

 

电子墨水屏凭借接近纸质书的阅读体验,以 Kindle 为代表的电子书成为不少阅读爱好者出门必带的数码设备,以省电、护眼为噱头的各种电子墨水屏设备也开始出现。发展了这么多年,电子墨水屏仿佛还是诞生初的样子,从普通消费者的角度看,它没有成为主流,但也从未离去。

 

E-link技术的起源

 

电子墨水屏技术最早可以追溯到 1996 年,它基于美国麻省理工学院媒体实验室(MIT Media Lab)的一项研究,利用电泳技术(EPD)实现显示,这类屏幕的显示效果十分接近传统纸张,因此也被成为电子纸1997 年,麻省理工学院的教授 Joseph Jacobson 创立 E Ink 公司,开始推动电子纸技术走向商业化,电子墨水技术成为电子纸的主流。

 

电子墨水与印刷使用的墨水很相似,都是用颜料所制,这也是为什么我们看到电子墨水屏和传统纸张显示效果相似的原因。电子墨水通常会制成薄膜,由大量微囊组成,这些微囊只有人类头发的直径大小。微囊中的黑白小球是带不同电荷的色素颗粒,初始状态下,色素颗粒悬浮在微囊中,当施加一定方向的电场后,相应的色素颗粒被推到顶部,微囊就会显示不同的颜色,而不同颜色的微囊组成了各种文字和图案。

 

  

电子墨水屏基本结构如下图所示:

 

⒈上层;⒉透明电极层;⒊透明微胶囊;⒋带正电荷的白色颜料;⒌带负电荷的黑色颜料;⒍透明液体(油);⒎电极像素层;⒏基板;⒐光线;⒑白色;⒒黑色

 

  

电子墨水屏是由许多电子墨水组成,电子墨水可以看成一个个胶囊的样子(如上图所示)。每一个胶囊(位置6)里面有液体电荷,其中正电荷染白色,负电荷染黑色。当在一侧(位置8)给予正负电压,带有电荷的液体就会被分别吸引和排斥。这样,每一个像素点就可以显示白色或者黑色了(注:彩色电子墨水的电子书并不是不能做,只是成本和技术还没符合市场要求)。

 

因为电子墨水的刷新是不连续的,每一次刷新完成就可以保持现在的图形,即使拔掉电池也依旧保存。可能会有人问到,拔了电池吸引电子墨水的电压就木有了,那么小球不就回复原状或者进入随机的混沌状态了吗?答案是因为电子墨水具有双稳态效应(磁滞效应)。

 

 

上图中,横轴是电子书提供的电压大小,纵轴灰度(假定正为最白,负为最黑)。电压加大的过程和减小的过程,给予同样的电压,电子墨水黑白程度是不同的。这样的效应就叫做双稳态效应(磁滞效应)。利用这样的效应,我们就可以给一个正电压(从0B点过程,走下面上升的路线),吸引负电荷,显示正电荷白色给读者,然后断电(从B减少到0,走上面那条回来的路线)。白色得以保持。于是,电子墨水的电子书省电就在于如果不需要显示有所变化,屏幕部分消耗电量为0

 

1:不变化屏幕电子书自己没电是由于电路板的待机消耗以及电池自己的内阻消耗

2:其他常见显示器无论屏幕内容是否变化,屏幕部分的耗电量都是持续的,变化不大。

 

为什么每一次变化(如:翻页),或者每隔一段时间就需要有一个全部清场的动作呢?我们刚假设电压从0加大然后再减少到0,但是电子墨水的灰度从位置A变到了位置C。那么如果下一次变化,如果我减少电压,也就是顺着上面那条返回路径继续行走,就没有问题。但是如果下一次刷新,我还需要这个像素显示白色,那么这个在C点情况的墨水所遵循的路线就不是这个图形了。电路所驱动的电压对应的灰度将会不准确。导致的结果就是黑色的墨水黑色程度不相同,白色的墨水有的没有完全白下去。就会出现我们所说的鬼影,或者残影。于是,为了避免残影的出现,就全部加到最大或者最小电压,把所有的墨水清零,从初始状态从新开始调整,这样所有的墨水小球就可以保持只有两种颜色的均匀显示了。

 

电子墨水屏的工作原理

 

“电子墨水的主要由大量细小微胶囊 ﹙microcapsules﹚组成,这些微胶囊约为人类头发直径大小。每个微胶囊中包含悬浮于澄清液体之中的带正电荷的白粒子和带负电荷的黑粒子。设置电场为正时,白粒子向微胶囊顶部移动,因而呈现白色。同时,黑粒子被拉到微胶囊底部,从而隐藏。如施加相反的电场,黑粒子在胶囊顶部出现,因而呈现黑色。”

 

 

 

对肉眼看来电子墨水像一瓶普通墨水,但悬浮在电子墨水液体中有几百万个细小的微胶囊。每个胶囊内部是染料和颜料芯片的混合物,这些细小的芯片可以受电荷作用。为了能看见电子墨水的微胶囊,可以把它想象成清晰的塑料水球。水球内包含几十个乒乓球,水球内充入的不是空气而是颜料水。如果从顶部看水球,我们可以看到许多白色乒乓球悬浮在液体中,于是水球看起来呈白色。从底部看水球,你只不过看到的是颜料水,于是水球看起来呈黑色。如果你把几千个水球放到一个容器,并使这些乒乓球在水球的顶和底之间运动,你就能看到容器在改变颜色。这就是电子墨水工作的基本原理。事实上这些水球是100 微米宽的微胶囊。在1平方英寸,大约包含10万个微胶囊。如果在一页纸上打印电子墨水,则一个句子包含30多个微胶囊。

 

电子墨水是融合化学,物理和电子学的整体产生的一种新材料。制造微胶囊本身仅涉及较简单的化学,可以比作做沙拉菜!微胶囊制成后被称为是一种胶质材料。这材料是细小的固态颗粒,承担液态的物理性质。于是微胶囊象传统墨水悬浮在液态“载媒体”,然而它将粘着到普通墨水可以用的任何表面。并且可以用现有的丝网印刷工艺打印。打印的微电子学技术改变了墨水颗粒的颜色并产生了字和图。

 

电子墨水屏的特点

 

1、电子墨水屏有两个优点:省电、护眼。

 

电子墨水屏可以在没有电源的情况下持续显示画面,只有画面变化时才需要消耗少量电源,比如 Kindle 在关机状态下也可以显示屏保,只有在翻页时,屏幕才会刷新。这种特性极大地将降低了电源消耗,也是电子书续航长的原因。

 

传统的 LCD 屏显示原理是利用背光发射,光线需要一直穿过显示屏,直射眼睛。而电子墨水屏无需背光,它是利用环境光打在显示屏上,再折射到眼睛。这种方式模拟了墨水和纸张的特性,环境光越强,显示效果越清晰。由于没有了闪烁,在长时间阅读时眼睛不容易感到疲劳。

 

电子墨水屏省电、护眼的特点让其成为电子书阅读器的首选,索尼和亚马逊相继推出配备电子墨水屏的阅读器。现在距离第一代 Kindle 发布已经过去了 10 年,电子墨水屏也已经有 20 年历史,从诞生起不少人就对其抱有厚望,认为电子书会革了纸质书的命,但直到今天,电子书从未成为市场主流,电子墨水屏似乎也很少出现明显的变化,技术好像一直没有更大的进步。

 

2、刷新率低,不适用于主流设备

 

电子墨水屏没有获得更多的市场份额,主要是受本身特性限制,其中最大的局限之一就是刷新率低。

 

相比主流的 LCD 显示屏,电子墨水屏无需不断刷新就可以显示内容,这降低了耗电,也减少了辐射,让阅读体验更接近纸张,不容易造成眼睛疲劳。但这样的特性也让电子墨水屏无法被主流电子设备采用。

 

不管是手机还是电脑,屏幕需要显示的内容都很丰富,同时还要进行弹出菜单、窗口滚动等操作,电子墨水屏极底的刷新率显然无法满足这样的要求。和 LCD 显示屏相比,电子墨水屏更适用于内容简单、变化较少的文字显示。

 

从诞生起就有的省电、护眼特性,让电子墨水屏成为电子书阅读器的标配,但也引来应用性单一的质疑。

 

E-link墨水屏与LCD液晶屏的主要区别

 

原理不同

 

EInk是基于电泳技术的显示技术。带黑白两种颜色的带点粒子在液态胶囊中在电场的作用下,上下浮动而形成画面的过程。在形成画面后,颜色粒子就停止运动,即使断电画面也不会消失。因此,在翻到某一页时,屏幕是不会闪烁。

 

LCD液晶屏的工作原理简单描述就是通过电压将每个固定好的独立像素中的液晶分子进行方位调整,达到显示不同颜色与画面的效果。由于液晶分子的是依靠电压维持状态,因此需要持续供电来维持显示。因此,TFT始终处于闪烁状态下,只是频率高肉眼分辨不出来而已。

 

  

显示机制不同

 

EInk是全反射式,也就是随着环境光的变化显示效果会不同。外界光源越好,显示效果越好。因此在晴朗的户外看EInk电子书与看纸质书的体验几乎一样。

 

由于Eink依赖环境光,当夜晚时环境光效果不佳,因此目前行业中通过增加导光板来解决夜晚阅读体验的问题。

 

LCD液晶屏有背光,所以基本上受外接影响不大,除非极端情况(夏天户外太阳光下)。因此在会有在户外,手机屏幕亮度需要调亮来抵御环境光对屏幕显示的遮盖效果。

 

残影问题 


由于EInk原理中,黑白粒子的固定状态特性,在阅读翻页时容易看到上页黑色粒子残留的印记,行业中俗称残影,因此屏幕商提供了一种恢复初始状态的刷新方式,也就是大家常见到的闪屏问题。类似阅读纸质书籍中的翻书的过程。

 

由于LCD液晶屏本身一致在刷新,因此不会有类似过程。

 

节能功耗

 

由于EInk的特性,在阅读过程中不需要耗电,只在翻页一瞬间消耗极少电量,因此电子书产品一般的使用周期都在2周甚至一个月左右。

 

由于LCD液晶屏始终需要电压来维持画面,基本上屏幕占了主要的电量消耗。目前基本上智能手机的使用是一天一充或一天多充。

 

结论

 

因此,无论从原理还是实际使用感受上,EInk在阅读文字与非彩色漫画类内容时,有着无可比拟的阅读优势:

 

1、高度接近纸张的阅读体验。

 

2、不伤眼睛,适合长时间阅读。

 

3、电池使用寿命长,接近一个月。

 

但也有一些自身劣势:

 

1、目前主要只有黑白产品,彩色只有三色(黑白红)。

 

2受限于其原理性的问题,无法像TFT屏幕能快速响应一些动画类需求。

 

3、刷新过程中会闪屏。

 

E-link技术应用

 

从诞生起就有的省电、护眼特性,让电子墨水屏成为电子书阅读器的标配,但也引来应用性单一的质疑,除了 Kindle,电子墨水屏好像并没有其他更合适的应用。

 

E Ink 官方在微博中不断强调不止 Kindle,似乎也证明了这种焦虑。这些年来,电子墨水屏也开始在其他设备中出现,比如手机。

 

 2014 年 APEC 峰会期间,俄罗斯总统普京将一台 YotaPhone 2 作为国礼,这台手机也因此受到很多的关注。YotaPhone 最大的特点就是其背部搭载的电子墨水屏,独特的双面屏设计和「国礼」光环让它成为当年最亮眼的手机之一。近期, Yota 顺势推出第三代手机 YOTA3,它配备了一块 E Ink 电子墨水屏,可以在阅读文字时起到省电、护眼的效果,这块屏幕还能独立运行一些 App

 

 

屏幕是手机的耗电大户,Kindle 与纸质书相近的阅读体验也早就让很多用户眼馋,YotaPhone 的出现让不少人看到新的商机,开始尝试将电子墨水屏与手机结合。趁着 YotaPhone 的热度,华为 P8 在发布时同步推出一款电子墨水屏手机壳。国外也出现了专做电子墨水屏手机壳配件的 InkCase


  

不过电子墨水屏与手机的结合更像是在丰富市场话题,远远谈不上技术创新。电子墨水屏只是作为补充,手机屏幕还是以实用性为主。

 

相比之下,电子墨水屏在手表上的尝试更像是一场革新。手表的显示屏小,成本可控,同时屏幕需要展示的内容少,符合电子墨水屏的定位。在这一领域最亮眼的是 FES Watch。索尼在的 20 周年庆典上宣布,整体用柔性 E-ink 屏制成的 FES Watch 将在中国限量发售。它的表盘和表带都由一整块柔性 E Ink 屏幕制成,没有断点又非常有设计感。由于只能显示黑白两色,它只有显示时间一个功能。由于 E Ink 屏幕的特殊性,FES Watch 的待机时间理论上可以达到 年。

 

  

这些应用虽然跳出了电子书阅读器的限制,但仍然是对电子墨水屏原有特性的应用。实际上,电子墨水屏也一直在尝试新的技术,以突破本身的局限。

 

E-link技术的未来:取代纸、取代印刷

 

在刚过去的 2017 年智慧显示与触控展览会上,E Ink 展出了彩色电子纸 ACeP。传统的电子墨水屏只能显示黑白两色,而彩色电子纸则是将传统的电泳式微囊技术延伸。黑白颗粒通过电场变化,呈现出灰阶与黑白画面,在此基础上覆盖彩色滤光片,将黑白粒子转换成 RGB 彩色粒子,就可以呈现彩色画面。E Ink 的彩色电子纸显示屏除了提供 16 灰阶的黑白显示效果外,还提供 4096 种色彩。

 

  

除了突破颜色限制的彩色电子纸,E Ink 还展示了 84 英寸拼接电子纸展示板、可折叠电子纸、具备手写功能的电子纸笔记本等技术应用。

 

不管是彩色电子纸还是可折叠电子纸,E Ink 所做的尝试都是在努力跳出传统电子墨水屏的局限,但从一些实际应用中我们也可以看到,电子墨水屏的使命并不是取代普通显示屏,主流电子设备不是它的主战场。关于电子墨水屏未来的应用,应该是在那些需要改变传统显示方式的地方,比如三色电子纸显示屏替代零售商店的商品标签,可以动态改变显示内容,帮助零售商及时改进营销策略。这些以前用传统纸张显示,现在需要灵活显示更多内容的领域,才是电子墨水屏未来的发展方向。

 

  

Kindle 已经诞生 10 年,电子墨水屏也出现了 20 年之久,对于一项已经足够「成熟」的技术来说,使命不再是寻找更多的应用场景,而是利用技术创新来创造更多需求。 


- END -



  



制造业的未来是智能化,智能化的基础就是传感器;互联网的方向是物联网,物联网的基石也是传感器;

 

《传感器技术》汇编了一套各种传感器的基础知识,介绍了各种传感器的原理。


【点击蓝色标题,获取文章】

1、一文读懂MEMS传感器

2、一文读懂接近传感器

3、一文读懂磁传感器

4、一文读懂流量传感器

5一文读懂压力传感器的原理及分类

6、一文读懂加速度传感器

7一文读懂超声波传感器

8一文读懂位移传感器

9、一文读懂光电传感器

10、一文读懂光纤传感器

11一文读懂温湿度传感器

12一文读懂图像传感器

13一文读懂生物传感器

14一文读懂霍尔传感器

15一文读懂距离传感器

16一文读懂氧传感器

17一文读懂风向风速传感器

18一文读懂纳米传感器

19一文读懂红外传感器

20 一文读懂红外传感器之热成像仪

21一文读懂气体传感器

23汽车传感器今日谈

24一文读懂手机传感器

25一文读懂医疗传感器

26一文读懂化学传感器

27一文读懂角速度传感器(陀螺仪)

28一文读懂换能器

29一文读懂旋转编码器

30一文读懂变速器

31一文读懂振动传感器

32一文读懂电容传感器

33一文读懂电涡流传感器

34一文读懂电感式传感器

35一文读懂光栅传感器

36一文读懂压电式传感器

37一文读懂烟雾传感器

38一文读懂电阻式传感器

39无线网路传感器详解

40MEMS传感器市场状况及主要厂商

41图像传感器的市场状况和主要厂商

42气体传感器的市场状况及主要厂商

43指纹传感器的市场状况和主要厂商

44汽车MEMS传感器的市场状况和主要厂商

为您发布产品,请点击“阅读原文”

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 109浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 88浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 85浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 80浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 71浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 141浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 102浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 84浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 50浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 71浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 51浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦