源来如此|在完全工作条件下进行测试之前测量LLC谐振回路

原创 德州仪器 2024-09-21 12:01

点击蓝字 关注我们



欢迎来到《电源设计小贴士集锦》系列文章



本期,我们将聚焦于

完全工作条件下进行测试之前

测量 LLC 谐振回路

探讨测量谐振回路增益曲线的方法

向大家展示方法的优点和局限性的示例



半桥串联谐振转换器可为超过 100W 的转换器实现高效率和高功率密度。最常见的谐振拓扑 (图 1) 是由串联磁化电感器、谐振电感器和电容器(缩写为 LLC)组成的谐振回路。参数值的选择决定了谐振回路的增益曲线形状,进而影响谐振转换器在系统中的运行。


图 1. 具有分裂谐振电容器的半桥 LLC 功率级,参数值的选择决定了谐振回路的增益曲线形状在向电路通电之前需要验证该曲线。来源:德州仪器  (TI)


确定一组参数并选择元件后,必须要在向电路通电之前验证增益曲线。在本期电源设计小贴士中,我将介绍一种测量谐振回路增益曲线的方法,并说明如何解读结果,内容中包括一些用来展示该方法的优点和局限性的示例。


频率响应分析器会向任意电路注入一个交流小信号,然后测量系统中两点的电压,以便在一个确定频率范围内确定信号增益和相位延迟。虽然频率响应分析器最常用于测试控制环路,但该设备也可以用来测量 LLC 转换器的功率级增益。图 2 显示了此类测量的接线图。


图 2. 谐振回路连接到频率响应分析器以重建增益曲线图的接线图。功率级的增益图可通过展示通道 2 电压除以通道 1 电压的幅值而得出。来源:德州仪器  (TI)


半桥 LLC 具有一对谐振电容器,其中一个连接到输入电压,另一个连接到初级接地。要在此电路中运行测试,谐振电容器必须相互并联,并且与初级绕组串联。分析器的注入信号和通道 1 测量会跨初级侧元件进行连接,从半桥的开关节点连接到谐振电容器的另一端。分析器的次级通道(通道 2)会跨次级绕组进行连接,并添加一个电阻器来近似模拟负载条件。在扫描注入交流信号的频率后,可以通过展示通道 2 电压除以通道 1 电压的幅值来绘制功率级的增益。图 3 显示了一个测试结果示例。


图 3. 可以从图 2 中所示的测试设置中观察到的 LLC 谐振回路增益曲线测量示例。来源:德州仪器  (TI)


根据变压器匝数比以及功率级初级侧和次级侧的开关和绕组配置,可以将功率级增益转换为电压增益。半桥 LLC 功率级通常显示有一个中心抽头次级绕组和两个输出整流器。在本例中,输出电压近似为输入电压、匝数比和工作频率下谐振回路的增益的乘积。图 4 中所绘制的其他次级配置选项使谐振回路能够转换为更高的输出电压。请注意,如果初级侧配置有全桥,则需要将这些比率乘以系数 2。


图 4. 为次级侧配置全波整流器可使传输的能量加倍 (a);双端次级配置可实现四倍电压增益 (b)。来源:德州仪器  (TI)


此方法的益处是可以直接在 PCB 上进行测量,并且在测试结果中将功率级寄生元件考虑在内。TI E2E™ 设计支持论坛文章“为什么您的 LLC 谐振转换器频率大错特错” (Why is Your LLC Resonant Converter Frequency Way, Way Off) 中,使用了一个替代模型来解释变压器的构造如何会在电路中引入额外的电感(图 5)。您可以围绕这些固有的寄生元件进行设计,或者将它们集成到您的设计中。例如,可以使用漏电感作为谐振电感器,这样可以从设计中移除一个物理元件,从而节省成本并提高效率。通过使用此快速测试,可以借助此方法简化对谐振回路设计的优化。


图 5. 使用漏电感作为 LLC 转换器谐振元件的变压器模型,这使设计人员能够围绕固有的寄生元件进行设计或将其集成到设计中。来源:德州仪器  (TI)


在次级侧使用同步整流器将进一步提高 LLC 转换器效率。这样将会降低导通损耗,而导通损耗往往决定了该元件的总损耗特性;然而,对 MOSFET 的选择可能会改变增益曲线的形状。低电阻 MOSFET 将具有较大的输出电容。变压器的匝数比可能会放大该电容,这在某些情况下可能会造成问题。正如我前面提到的,通过测试电路中的增益曲线,有助于考虑整个功率级中的额外寄生元件。图 6 突出显示了在初始谐振回路设计中可能不被注意的 MOSFET 输出电容的效应。


图 6. 在此设计中,寄生电容增加了一个 300kHz 左右的谐振,而它本不应在设计阶段出现。来源:德州仪器  (TI)


然而,使用频率响应分析器无法将所有设计寄生元件考虑在内。例如,测量不会显示中心抽头结构中彼此耦合不佳的次级绕组的效应。初级绕组和次级绕组之间的松散耦合会形成漏电感,而这在 LLC 设计中某种程度上是有利的。但是,彼此耦合不佳的次级绕组会降低功率级的性能。在交流分析中无法观察这种效应,但在监测次级绕组电压时很明显。


例如,图 7 中的设计具有正确的增益曲线。但观察次级绕组上的电压可发现,电平开始时较高,然后下降至低于输出电压的电平。理想情况下,这些电压波形应该看起来更像方波。松散耦合还会在次级整流器关断沿上制造一个大泄漏尖峰。随着负载增加,彼此松散耦合的次级绕组的失真效应愈发明显,并且会限制可能的输出功率。


图 7. 变压器设计中的松散耦合在开关波形中显而易见,但在其增益曲线中不明显。来源:德州仪器  (TI)


即使重新配置该变压器设计,使次级绕组彼此更好地耦合,所产生的谐振电感和磁化电感仍然保持不变。与预期一致,增益曲线测量在视觉上没有差异。但图 8 中的开关波形说明新设计有显著改进。

图 8. 经过改进的变压器设计,其中更好的耦合减轻了压降,同时保持了增益曲线形状。来源:德州仪器  (TI)


重新配置次级绕组后,开关波形看起来更接近预期;波形更趋于方形,同时阻断电压等于输出电压。关断沿产生的泄漏尖峰也得以消除。


两种变压器设计实际上相同,不需要额外的元件。然而,这些变化对总体效率产生了很大影响。


结语


在设计谐振转换器时,应验证谐振回路的增益曲线,以此来开始评估。虽然无法检测所有缺陷,但可以在一定程度上洞察可实现的增益,以及预期的工作频率范围。




点击阅读原文即刻阅读《电源设计小贴士集锦》开启电源设计新篇章!

德州仪器 德州仪器(TI)是全球最大的半导体设计与制造公司之一。我们将在这里为您分享TI最新的动态和技术创新。
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 63浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 40浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 66浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦