干货|彩色图像高斯反向投影

OpenCV学堂 2024-09-20 23:28

彩色图像高斯反向投影

一:介绍

图像反向投影的最终目的是获取ROI然后实现对ROI区域的标注、识别、测量等图像处理与分析,是计算机视觉与人工智能的常见方法之一。图像反向投影通常是彩色图像投影效果会比灰度图像效果要好,原因在于彩色图像带有更多对象细节信息,在反向投影的时候更加容易判断、而转为灰度图像会导致这些细节信息丢失、从而导致分割失败。最常见的是基于图像直方图特征的反向投影。我们这里介绍一种跟直方图反向投影不一样的彩色图像反向投影方法,通过基于高斯的概率分布公式(PDF)估算,反向投影得到对象区域,该方法也可以看做最简单的图像分割方法。缺点是对象颜色光照改变和尺度改变不具备不变性特征。所以需要在光照度稳定情况下成像采集图像数据。 在这种情况下使用的高斯概率密度公式为:

  1. 输入模型M,对M的每个像素点(R,G,B)计算I=R+G+B r=R/I, g=G/I, b=B/I

  2. 根据得到权重比例值,计算得到对应的均值 与标准方差

  3. 对输入图像的每个像素点计算根据高斯公式计算P(r)与P(g)的乘积

  4. 归一化之后输出结果,即为最终基于高斯PDF的反向投影图像

二:算法步骤与代码实现

  1. 首先加载模型图像与测试图像

  2. 根据模型图像计算得到每个通道对应的均值与标准方差参数

  3. 根据参数方差计算每个像素点的PDF值

  4. 归一化概率分布图像-即为反向投影图像,显示

  5. 根据Mask得到最终颜色模型对象分割

完整的基于OpenCV的C++代码如下:

  1. #include

  2. #include

  3. #include

  4. using namespace cv;

  5. using namespace std;

  6. int main(int argc, char** argv) {

  7.    // 加载模型图像与测试图像

  8.    Mat src = imread("D:/gloomyfish/gc_test.png");

  9.    Mat model = imread("D:/gloomyfish/gm.png");

  10.    if (src.empty() || model.empty()) {

  11.        printf("could not load image...\n");

  12.        return -1;

  13.    }

  14.    imshow("input image", src);

  15.    // 对每个通道 计算高斯PDF的参数

  16.    // 有一个通道不计算,是因为它可以通过1-r-g得到

  17.    // 无需再计算

  18.    Mat R = Mat::zeros(model.size(), CV_32FC1);

  19.    Mat G = Mat::zeros(model.size(), CV_32FC1);

  20.    int r = 0, g = 0, b = 0;

  21.    float sum = 0;

  22.    for (int row = 0; row < model.rows; row++) {

  23.        uchar* current = model.ptr(row);

  24.        for (int col = 0; col < model.cols; col++) {

  25.            b = *current++;

  26.            g = *current++;

  27.            r = *current++;

  28.            sum = b + g + r;

  29.            R.at(row, col) = r / sum;

  30.            G.at(row, col) = g / sum;

  31.        }

  32.    }

  33.    // 计算均值与标准方差

  34.    Mat mean, stddev;

  35.    double mr, devr;

  36.    double mg, devg;

  37.    meanStdDev(R, mean, stddev);

  38.    mr = mean.at(0, 0);

  39.    devr = mean.at(0, 0);

  40.    meanStdDev(G, mean, stddev);

  41.    mg = mean.at(0, 0);

  42.    devg = mean.at(0, 0);

  43.    int width = src.cols;

  44.    int height = src.rows;

  45.    // 反向投影

  46.    float pr = 0, pg = 0;

  47.    Mat result = Mat::zeros(src.size(), CV_32FC1);

  48.    for (int row = 0; row < height; row++) {

  49.        uchar* currentRow = src.ptr(row);

  50.        for (int col = 0; col < width; col++) {

  51.            b = *currentRow++;

  52.            g = *currentRow++;

  53.            r = *currentRow++;

  54.            sum = b + g + r;

  55.            float red = r / sum;

  56.            float green = g / sum;

  57.            pr = (1 / (devr*sqrt(2 * CV_PI)))*exp(-(pow((red - mr), 2)) / (2 * pow(devr, 2)));

  58.            pg = (1 / (devg*sqrt(2 * CV_PI)))*exp(-(pow((green - mg),2)) / (2 * pow(devg, 2)));

  59.            sum = pr*pg;

  60.            result.at(row, col) = sum;

  61.        }

  62.    }

  63.    // 归一化显示高斯反向投影

  64.    Mat img(src.size(), CV_8UC1);

  65.    normalize(result, result, 0, 255, NORM_MINMAX);

  66.    result.convertTo(img, CV_8U);

  67.    Mat segmentation;

  68.    src.copyTo(segmentation, img);

  69.    // 显示

  70.    imshow("backprojection demo", img);

  71.    imshow("segmentation demo", segmentation);

  72.    waitKey(0);

  73.    return 0;

  74. }

三:测试图像与效果演示

蓝色矩形框为模型,整个图像为测试图像

反向投影结果

分割提取结果

四:总结

大家看了这个例子总是有点怪怪的,总会想起点什么,如果你能想起点什么的话就是GMM,高斯混合模型,高斯混合模型正是在此基础上进一步演化而来。

治疗对未来焦虑的良药就在今天你自己的所为


OpenCV4系统化学习


深度学习系统化学习

推荐阅读

OpenCV4.8+YOLOv8对象检测C++推理演示

ZXING+OpenCV打造开源条码检测应用

攻略 | 学习深度学习只需要三个月的好方法

三行代码实现 TensorRT8.6 C++ 深度学习模型部署

实战 | YOLOv8+OpenCV 实现DM码定位检测与解析

对象检测边界框损失 – 从IOU到ProbIOU

初学者必看 | 学习深度学习的五个误区


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论 (0)
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 117浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 141浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 189浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 92浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 174浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 131浏览
  • 一、行业背景与产品需求随着社会对清洁效率与用户体验要求的提升,洗地机行业迎来快速发展期。面对激烈的市场竞争,产品差异化成为制胜关键。传统洗地机普遍存在两大痛点:操作交互单一化与成本控制困境。尤其对于老年用户群体,缺乏语音状态提示和警示功能,导致操作门槛升高;而硬件方案中MCU与语音功能的耦合设计,则增加了系统复杂度与开发成本。WT588F/WTV/WT2003系列语音芯片的引入,为洗地机行业提供了低成本、高集成、强扩展性的解决方案,既满足用户友好性需求,又助力厂商实现硬件架构优化。二、方案核心亮
    广州唯创电子 2025-04-17 08:22 38浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 30浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 127浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 96浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 56浏览
  • 一、汽车智能化浪潮下的蓝牙技术革新随着智能网联汽车的快速发展,车载信息娱乐系统(IVI)正从单一的驾驶辅助向“第三生活空间”转型。蓝牙技术作为车内无线连接的核心载体,承担着音频传输、设备互联、数据交互等关键任务。然而,传统方案中MCU需集成蓝牙协议栈,开发周期长、成本高,且功能扩展性受限。WT2605C蓝牙语音芯片应势而生,以双模蓝牙SOC架构重新定义车用蓝牙系统的开发模式,通过“多、快、好、省”四大核心价值,助力车企快速打造高性价比的智能座舱交互方案。二、WT2605C芯片的四大核心优势1.
    广州唯创电子 2025-04-17 08:38 70浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 165浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 60浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 100浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦