C语言实现【面向对象】的一些方法

strongerHuang 2024-09-19 08:01

关注+星标公众,不错过精彩内容

编排 | strongerHuang

微信公众号 | strongerHuang

不知道有多少人去了解过语言的发展史,早期C语言的语法功能其实比较简单。随着应用需求和场景的变化,C语言的语法功能在不断升级变化。

虽然我们的教材有这么一个结论:C语言是面向过程的语言,C++是面向对象的编程语言,但面向对象的概念是在C语言阶段就有了,而且应用到了很多地方,比如某些操作系统内核、通信协议等。

面向对象编程,也就是大家说的OOP(Object Oriented Programming)并不是一种特定的语言或者工具,它只是一种设计方法、设计思想,它表现出来的三个最基本的特性就是封装、继承与多态

为什么要用C语言实现面向对象

阅读文本之前肯定有读者会问这样的问题:我们有C++面向对象的语言,为什么还要用C语言实现面向对象呢?

C语言这种非面向对象的语言,同样也可以使用面向对象的思路来编写程序的。只是用面向对象的C++语言来实现面向对象编程会更简单一些,但是C语言的高效性是其他面向对象编程语言无法比拟的。

当然使用C语言来实现面向对象的开发相对不容易理解,这就是为什么大多数人学过C语言却看不懂Linux内核源码。

所以这个问题其实很好理解,只要有一定C语言编程经验的读者都应该能明白:面向过程的C语言和面向对象的C++语言相比,代码运行效率、代码量都有很大差异。在性能不是很好、资源不是很多的MCU中使用C语言面向对象编程就显得尤为重要。

具备条件

要想使用C语言实现面向对象,首先需要具备一些基础知识。比如:(C语言中的)结构体、函数、指针,以及函数指针等,(C++中的)基类、派生、多态、继承等。

首先,不仅仅是了解这些基础知识,而是有一定的编程经验,因为上面说了“面向对象是一种设计方法、设计思想”,如果只是停留在字面意思的理解,没有这种设计思想肯定不行。

因此,不建议初学者使用C语言实现面向对象,特别是在真正项目中。建议把基本功练好,再使用。

利用C语言实现面向对象的方法很多,下面就来描述最基本的封装、继承和多态。

封装

封装就是把数据和函数打包到一个类里面,其实大部分C语言编程者都已近接触过了。

C 标准库中的 fopen(), fclose(), fread(), fwrite()等函数的操作对象就是 FILE。数据内容就是 FILE,数据的读写操作就是 fread()、fwrite(),fopen() 类比于构造函数,fclose() 就是析构函数。

这个看起来似乎很好理解,那下面我们实现一下基本的封装特性。

#ifndef SHAPE_H#define SHAPE_H
#include
// Shape 的属性typedef struct { int16_t x; int16_t y; } Shape;
// Shape 的操作函数,接口函数void Shape_ctor(Shape * const me, int16_t x, int16_t y);void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);int16_t Shape_getX(Shape const * const me);int16_t Shape_getY(Shape const * const me);
#endif /* SHAPE_H */

这是 Shape 类的声明,非常简单,很好理解。一般会把声明放到头文件里面 “Shape.h”。来看下 Shape 类相关的定义,当然是在 “Shape.c” 里面。

#include "shape.h"
// 构造函数void Shape_ctor(Shape * const me, int16_t x, int16_t y){ me->x = x; me->y = y;}
void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy) { me->x += dx; me->y += dy;}
// 获取属性值函数int16_t Shape_getX(Shape const * const me) { return me->x;}int16_t Shape_getY(Shape const * const me) { return me->y;}

再看下 main.c
#include "shape.h" /* Shape class interface */#include /* for printf() */
int main() { Shape s1, s2; /* multiple instances of Shape */
Shape_ctor(&s1, 0, 1); Shape_ctor(&s2, -1, 2);
printf("Shape s1(x=%d,y=%d)\n", Shape_getX(&s1), Shape_getY(&s1)); printf("Shape s2(x=%d,y=%d)\n", Shape_getX(&s2), Shape_getY(&s2));
Shape_moveBy(&s1, 2, -4); Shape_moveBy(&s2, 1, -2);
printf("Shape s1(x=%d,y=%d)\n", Shape_getX(&s1), Shape_getY(&s1)); printf("Shape s2(x=%d,y=%d)\n", Shape_getX(&s2), Shape_getY(&s2));
return 0;}

编译之后,看看执行结果:
Shape s1(x=0,y=1)Shape s2(x=-1,y=2)Shape s1(x=2,y=-3)Shape s2(x=0,y=0)
整个例子,非常简单,非常好理解。以后写代码时候,要多去想想标准库的文件IO操作,这样也有意识的去培养面向对象编程的思维。

继承

继承就是基于现有的一个类去定义一个新类,这样有助于重用代码,更好的组织代码。在 C 语言里面,去实现单继承也非常简单,只要把基类放到继承类的第一个数据成员的位置就行了。

例如,我们现在要创建一个 Rectangle 类,我们只要继承 Shape 类已经存在的属性和操作,再添加不同于 Shape 的属性和操作到 Rectangle 中。

下面是 Rectangle 的声明与定义:
#ifndef RECT_H#define RECT_H
#include "shape.h" // 基类接口
// 矩形的属性typedef struct { Shape super; // 继承 Shape
// 自己的属性 uint16_t width; uint16_t height;} Rectangle;
// 构造函数void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y, uint16_t width, uint16_t height);
#endif /* RECT_H */

#include "rect.h"
// 构造函数void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y, uint16_t width, uint16_t height){ /* first call superclass’ ctor */ Shape_ctor(&me->super, x, y);
/* next, you initialize the attributes added by this subclass... */ me->width = width; me->height = height;}

我们来看一下 Rectangle 的继承关系和内存布局:

因为有这样的内存布局,所以你可以很安全的传一个指向 Rectangle 对象的指针到一个期望传入 Shape 对象的指针的函数中,就是一个函数的参数是 “Shape *”,你可以传入 “Rectangle *”,并且这是非常安全的。这样的话,基类的所有属性和方法都可以被继承类继承!

#include "rect.h" #include
int main() { Rectangle r1, r2;
// 实例化对象 Rectangle_ctor(&r1, 0, 2, 10, 15); Rectangle_ctor(&r2, -1, 3, 5, 8);
printf("Rect r1(x=%d,y=%d,width=%d,height=%d)\n", Shape_getX(&r1.super), Shape_getY(&r1.super), r1.width, r1.height); printf("Rect r2(x=%d,y=%d,width=%d,height=%d)\n", Shape_getX(&r2.super), Shape_getY(&r2.super), r2.width, r2.height);
// 注意,这里有两种方式,一是强转类型,二是直接使用成员地址 Shape_moveBy((Shape *)&r1, -2, 3); Shape_moveBy(&r2.super, 2, -1);
printf("Rect r1(x=%d,y=%d,width=%d,height=%d)\n", Shape_getX(&r1.super), Shape_getY(&r1.super), r1.width, r1.height); printf("Rect r2(x=%d,y=%d,width=%d,height=%d)\n", Shape_getX(&r2.super), Shape_getY(&r2.super), r2.width, r2.height);
return 0;}

输出结果:
Rect r1(x=0,y=2,width=10,height=15)Rect r2(x=-1,y=3,width=5,height=8)Rect r1(x=-2,y=5,width=10,height=15)Rect r2(x=1,y=2,width=5,height=8)

多态

C++ 语言实现多态就是使用虚函数。在 C 语言里面,也可以实现多态。

现在,我们又要增加一个圆形,并且在 Shape 要扩展功能,我们要增加 area() 和 draw() 函数。但是 Shape 相当于抽象类,不知道怎么去计算自己的面积,更不知道怎么去画出来自己。而且,矩形和圆形的面积计算方式和几何图像也是不一样的。

下面让我们重新声明一下 Shape 类:
#ifndef SHAPE_H#define SHAPE_H
#include
struct ShapeVtbl;// Shape 的属性typedef struct { struct ShapeVtbl const *vptr; int16_t x; int16_t y; } Shape;
// Shape 的虚表struct ShapeVtbl { uint32_t (*area)(Shape const * const me); void (*draw)(Shape const * const me);};
// Shape 的操作函数,接口函数void Shape_ctor(Shape * const me, int16_t x, int16_t y);void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);int16_t Shape_getX(Shape const * const me);int16_t Shape_getY(Shape const * const me);
static inline uint32_t Shape_area(Shape const * const me) { return (*me->vptr->area)(me);}
static inline void Shape_draw(Shape const * const me){ (*me->vptr->draw)(me);}

Shape const *largestShape(Shape const *shapes[], uint32_t nShapes);void drawAllShapes(Shape const *shapes[], uint32_t nShapes);
#endif /* SHAPE_H */

看下加上虚函数之后的类关系图:

5.1 虚表和虚指针
虚表(Virtual Table)是这个类所有虚函数的函数指针的集合。

虚指针(Virtual Pointer)是一个指向虚表的指针。这个虚指针必须存在于每个对象实例中,会被所有子类继承。

在《Inside The C++ Object Model》的第一章内容中,有这些介绍。

5.2 在构造函数中设置vptr
在每一个对象实例中,vptr 必须被初始化指向其 vtbl。最好的初始化位置就是在类的构造函数中。事实上,在构造函数中,C++ 编译器隐式的创建了一个初始化的vptr。在 C 语言里面, 我们必须显示的初始化vptr。

下面就展示一下,在 Shape 的构造函数里面,如何去初始化这个 vptr。
#include "shape.h"#include
// Shape 的虚函数static uint32_t Shape_area_(Shape const * const me);static void Shape_draw_(Shape const * const me);
// 构造函数void Shape_ctor(Shape * const me, int16_t x, int16_t y) { // Shape 类的虚表 static struct ShapeVtbl const vtbl = { &Shape_area_, &Shape_draw_ }; me->vptr = &vtbl; me->x = x; me->y = y;}

void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy){ me->x += dx; me->y += dy;}

int16_t Shape_getX(Shape const * const me) { return me->x;}int16_t Shape_getY(Shape const * const me) { return me->y;}
// Shape 类的虚函数实现static uint32_t Shape_area_(Shape const * const me) { assert(0); // 类似纯虚函数 return 0U; // 避免警告}
static void Shape_draw_(Shape const * const me) { assert(0); // 纯虚函数不能被调用}

Shape const *largestShape(Shape const *shapes[], uint32_t nShapes) { Shape const *s = (Shape *)0; uint32_t max = 0U; uint32_t i; for (i = 0U; i < nShapes; ++i) { uint32_t area = Shape_area(shapes[i]);// 虚函数调用 if (area > max) { max = area; s = shapes[i]; } } return s;}

void drawAllShapes(Shape const *shapes[], uint32_t nShapes) { uint32_t i; for (i = 0U; i < nShapes; ++i) { Shape_draw(shapes[i]); // 虚函数调用 }}

5.3 继承 vtbl 和 重载 vptr
上面已经提到过,基类包含 vptr,子类会自动继承。但是,vptr 需要被子类的虚表重新赋值。并且,这也必须发生在子类的构造函数中。下面是 Rectangle 的构造函数。
#include "rect.h" #include
// Rectangle 虚函数static uint32_t Rectangle_area_(Shape const * const me);static void Rectangle_draw_(Shape const * const me);
// 构造函数void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y, uint16_t width, uint16_t height){ static struct ShapeVtbl const vtbl = { &Rectangle_area_, &Rectangle_draw_ }; Shape_ctor(&me->super, x, y); // 调用基类的构造函数 me->super.vptr = &vtbl; // 重载 vptr me->width = width; me->height = height;}
// Rectangle's 虚函数实现static uint32_t Rectangle_area_(Shape const * const me) { Rectangle const * const me_ = (Rectangle const *)me; //显示的转换 return (uint32_t)me_->width * (uint32_t)me_->height;}
static void Rectangle_draw_(Shape const * const me) { Rectangle const * const me_ = (Rectangle const *)me; //显示的转换 printf("Rectangle_draw_(x=%d,y=%d,width=%d,height=%d)\n", Shape_getX(me), Shape_getY(me), me_->width, me_->height);}

5.4 虚函数调用
有了前面虚表(Virtual Tables)和虚指针(Virtual Pointers)的基础实现,虚拟调用(后期绑定)就可以用下面代码实现了。
uint32_t Shape_area(Shape const * const me){ return (*me->vptr->area)(me);}

这个函数可以放到.c文件里面,但是会带来一个缺点就是每个虚拟调用都有额外的调用开销。为了避免这个缺点,如果编译器支持内联函数(C99)。我们可以把定义放到头文件里面,类似下面:
static inline uint32_t Shape_area(Shape const * const me) { return (*me->vptr->area)(me);}

如果是老一点的编译器(C89),我们可以用宏函数来实现,类似下面这样:
#define Shape_area(me_) ((*(me_)->vptr->area)((me_)))

看一下例子中的调用机制:

5.5 main.c
#include "rect.h" #include "circle.h" #include
int main() { Rectangle r1, r2; Circle c1, c2; Shape const *shapes[] = { &c1.super, &r2.super, &c2.super, &r1.super }; Shape const *s;
// 实例化矩形对象 Rectangle_ctor(&r1, 0, 2, 10, 15); Rectangle_ctor(&r2, -1, 3, 5, 8);
// 实例化圆形对象 Circle_ctor(&c1, 1, -2, 12); Circle_ctor(&c2, 1, -3, 6);
s = largestShape(shapes, sizeof(shapes)/sizeof(shapes[0])); printf("largetsShape s(x=%d,y=%d)\n", Shape_getX(s), Shape_getY(s));
drawAllShapes(shapes, sizeof(shapes)/sizeof(shapes[0]));
return 0;}
输出结果:
largetsShape s(x=1,y=-2)Circle_draw_(x=1,y=-2,rad=12)Rectangle_draw_(x=-1,y=3,width=5,height=8)Circle_draw_(x=1,y=-3,rad=6)Rectangle_draw_(x=0,y=2,width=10,height=15)

总结

还是那句话,面向对象编程是一种方法,并不局限于某一种编程语言。用 C 语言实现封装、单继承,理解和实现起来比较简单,多态反而会稍微复杂一点,如果打算广泛的使用多态,还是推荐转到 C++ 语言上,毕竟这层复杂性被这个语言给封装了,你只需要简单的使用就行了。但并不代表,C 语言实现不了多态这个特性。
参考素材:
https://blog.csdn.net/onlyshi/article/details/81672279
声明:本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。

------------ END ------------



●专栏《嵌入式工具

●专栏《嵌入式开发》

●专栏《Keil教程》

●嵌入式专栏精选教程


关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。

点击“阅读原文”查看更多分享。

strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 156浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 208浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 191浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 39浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 93浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 134浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 44浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 106浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 34浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 77浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦