纯电动商用车底盘协同控制器开发

原创 智能汽车设计 2024-09-18 09:06

摘要:文章致力于研究开发纯电动商用车底盘的协同控制器,通过车辆动力学建模和深度学习与比例-积分-微分(PID)控制技术的结合,设计了转向制动协同控制器,通过仿真验证了控制器的有效性和稳定性。仿真结果显示,纯电动商用车的操控性和安全性得到了良好提升,为商用车的电动化发展提供了支持。

车辆动力学稳定控制对驾驶安全至关重要,并受到广泛关注。之前的研究提出了多种改善操控稳定性的方法[1-2]随着自动驾驶技术的发展,智能车辆控制引起了研究人员的兴趣,包括各种先进的驾驶辅助系统和自动驾驶技术[3]许多研究学者将纯电动商用车作为研究对象,因其具备零尾气排放、低成本、静音环保和高效能等特性。传统纯电动商用车辆采用的电子稳定控制系统(Electronic Stability Controller, ESC)通过主动制动控制提供额外的偏航力矩。然而额外的偏航力矩并不能明显提升操稳性能,随着技术的发展,提出了直接偏航力矩控制和主动前轮转向控制,其被认为可有效提升操纵稳定性[4]而直接偏航力矩控制可能会对车辆纵向动力学产生不良影响,主动前轮转向控制在侧向轮胎力非线性区域存在一定的局限性。因此,集成直接偏航力矩控制和主动前轮转向控制被认为可以实现最佳效果。本文旨在解决此协调控制问题,探索新的方法以提高车辆的操纵稳定性。其中协同控制器设计分为两个主要部分:第一部分,采用深度学习结合比例-积分-微分(Proportion-Integral-Differential, PID)方法,以获取预期的附加横摆力矩。第二部分,构建了转向与制动协同控制策略,对前轮转角和制动压力进行仲裁分配。最后,通过仿真验证了该协同控制算法的有效性。

1 动力学建模分析

本文主要考虑车辆的横向动力学,复杂的车辆动力学模型可能会给控制器的设计和实时操作带来巨大挑战。因此,本文采用了一个二自由度的车辆动力学模型来设计协调控制器,如图1 所示。其中,OXY 表示大地参考系,Cxy 表示车辆参考系。

图1 车辆动力学模型

使用质心侧偏角和横摆率作为变量,描述车辆的横向动力学方程[5],如下:

式中,m 为车辆总质量;Iz 为横摆转动惯量;lflr 分别为前轴和后轴至质心的距离;r 为横摆率;β为质心侧偏角;δ 为前轮转向角;CfCr 为前轮侧偏刚度;αfαr 为前、后轮侧偏角;αr 为后轮侧偏角;v 为车速;FyfFyr 为广义前、后轮侧向力;Df 为轮距。由于Fyf=Fyfl+FyfrFyr=Fyrl+Fyrr,其中Fyij 分别表示四个轮胎的侧向力,i=f,r,j=l,r。当车辆受到较小的横向加速度时,其轮胎处于线性区域内运行。因此,车辆的横向力Fyf 和Fyr 可以根据简单的线性轮胎模型计算,该模型采用了等效轮胎侧向刚度Cf 和 Cr其表达式如下:

式中,αf 和αr 分别为

经过等式变化将式(1)重新改写后得

式中

把式(4)改写为状态空间方程形式,则有

式中,

2 协同控制器设计

为提高电动车辆的底盘协调性及操纵稳定性,需要设计一个合适的协调控制系统,给定“零”轨迹作为理想状态目标,即βd=0,同时给定稳态转向时r 的理想状态rd,公式如下[5]

式中,为稳定参数。

协同控制系统设计分为两层。在上层控制器中,建立横摆角速度误差系统,利用深度学习算法回归得到PID 控制算法参数,进而得到附加的横摆力矩。最后,在下层控制器中,根据不同的仲裁策略对附加横摆力矩进行分配,计算补偿转角,合理地分配各个轮胎的制动压力。

2.1 被控模型

基于式(1)被动模型,建立主动系统空间状态方程如下:

式中:

式中,∆M 为附加横摆力矩,ABC 分别为状态转移矩阵、转角系数矩阵和控制矩阵。

2.2 上层控制器设计

本节控制算法采用深度学习回归算法与PID算法结合的方式设计一个具有较高泛化能力的综合控制器。深度学习算法能够从原始数据中学习到更高级别的特征表示,而无需手工设计特征[6]这样可以减少特征工程的工作量,并提高模型的性能,同时具有较强的稳定性。PID 技术被广泛应用于工业界,其能够快速响应系统的变化,具有较高的鲁棒性[7]

基于此,构建控制算法函数为

式中,e(t)=β-βd 为实际侧偏角度与理想状态下的误差;KpKiKd 的三个函数为深度学习回归算法求解,其含义分别为比例,积分,微分系数。

理想状态情况下根据式(7),可得

使用深度学习算法计算PID 控制器的上层控制器,选取如下:

1)训练数据:不同转角δ,被动系统模型仿真输出数据β,及理想状态得到的∆M数据采集工况包括车辆空载状态,在干燥的公路上以两种车速行驶(每小时40 km 和60 km)分别采集。环境温度为20 ℃。转角采集范围为-360°到360°,每隔60°采样一次,共计12 个转角条件。

2)模型搭建:通过选择多层感知器作为神经网络结构,此结构模型为序贯模型,模型深度为10 层,每层128 个神经元。

3)损失函数:均方误差(Mean Squared Error,MSE)作为损失函数,其表达式如下:

式中,为理想状态下变量值;yi 为真实状态变量值。

4)模型迭代:使用梯度下降优化算法来更新神经网络模型的参数β

5)模型输出:预测输出Kp=19 860,Ki=13,Kd=33。

最后将深度学习模型的预测结果带入控制算法函数式(8)中,即可获得期望的附加横摆力矩∆M用于下层控制器的设计。

2.3 下层控制器设计

协同控制器通过附加横摆力矩来控制车辆的行驶稳定性。主动转向系统只能在一定范围内修正前轮转角,对横向稳定性的影响有限。在临界失稳状态下,协同控制器介入,在轮胎施加制动力,以维持车辆的横摆动力学稳定。定义动力学稳定性因数为ε[4],其公式如下:

式中,τ 为权重分配系数,协同控制器的阈值εth约为0.2,结合实车调参,并通过Trucksim 仿真实验进行分析,确定其取值。εεth 时,协同控制器执行修正前轮转角;ε>εth 时,协同控制器主导控制以实现及时反馈干预。在转向过程中,协同控制器触发附加横摆力矩时,忽略轮胎侧偏角。

1)当εεth 时,由图1 可得力矩计算关系:

由于第2 节中FyfrFyflFyrlFyrrlrlr 已知,进而可以求出δ 修正

则修正转角为

2)当ε>εth 时,由图1 可得力矩计算关系:

式中,FxfrFxflFxfrFxfl 分别为由∆M 引起的地面对轮胎作用力。

当所需∆M 制动>0 时,优先对左后轮施加制动力矩,力矩不足时再对左前轮施加额外制动力矩,左侧轮胎作用力分配关系满足:

式中,hg 为车辆质心距地面高度;μ 为路面附着系数;BfBr 分别为车辆前、后轴的轮距。同理∆M 制动<0 时,优先对右后轮施加制动力矩,其次,再对右前轮施加制动力矩,分配公式与式(15)相似,将左侧轮胎力换为右侧轮胎力,即完成制动力分配。

3 仿真试验

为验证控制效果,本节对协同控制器进行仿真分析,仿真模型基于TruckSim-Simulink 联合仿真,深度学习基于Keras 框架进行模型训练,下层控制器分配算法由MATLAB 程序编写。仿真实验模型参数如表1 所示。模型输入选择单变道操纵为前轮转向角输入,如图2 所示。


表1 二自由度车辆模型参数的值

图2 单变道操纵下的前轮转向角

图3展示了单变道操纵下无控制和协同控制的对比结果,并显示了下层控制器输出的附加横摆力矩所分配的各轮制动力和主动补偿转角的仿真结果。可以看出,协同控制器有效地协调分配制动力矩,并对转角进行补偿。相较于无控制系统,协同控制器有效地控制了质心侧偏角和横摆率,提升了车辆的操纵稳定性。

图3 单变道操纵下综合性能比较

4 结论

动态稳定控制对驾驶安全至关重要。本研究集成深度学习和PID 方法设计了协同控制器,有效提高车辆操控稳定性。通过优化转向与制动协同控制策略,实现了对前轮转角和制动压力的有效仲裁分配。仿真验证表明,在不同路面条件下,该协同控制算法具有良好的性能,为提高车辆动力学稳定性提供了新的方法。


参考文献


[1] 田军南,黄日帆,王垚,等.电动汽车线控转向系统操纵稳定性研究[J].时代汽车,2023(20):103-105.


[2] 康宇航,李韶华,杨泽坤.基于相空间三维动态稳定域的重型车辆稳定性控制策略研究[J].汽车工程,2023,45(4):637-646.


[3] 李骏,万文星,郝三强,等.复杂路况下无人驾驶路径跟踪模型预测控制研究[J].汽车工程,2022,44(5):11-16.


[4] CHENG S,LI L,LIU C Z,et al.Robust LMI-based Hinfinite Controller Integrating AFS and DYC of Autonomous Vehicles with Parametric Uncertainties[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,51(11):6901-6910.


[5] 庞辉,姚睿,王鹏,等.基于自适应反推控制器的电动汽车横摆稳定性控制方法:CN202110838677.2[P].2024-03-26.


[6] 林泽柠,汪嘉鹏,金连文.视觉信息抽取的深度学习方法综述[J].中国图象图形学报,2023,28(8):2276-2297.


[7] LIU L,ZHANG L,PAN G,et al.Robust Yaw Control of Autonomous Underwater Vehicle Based on Fractionalorder PID Controller[J].Ocean Engineering,2022,257:111493.

智能汽车设计 关注智能汽车发展,分享智能汽车知识!
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 77浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 61浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 38浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 65浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦