【光电智造】如何在无人机上部署YOLOv4物体检测器

今日光电 2024-09-12 18:01

 今日光电 

有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----


1

代码编译

准备工作

  • 推荐使用Ubuntu 18.04

  • CMake >= 3.8https://cmake.org/download/

  • CUDA >= 10.0https://developer.nvidia.com/cuda-toolkit-archive

  • OpenCV >= 2.4https://opencv.org/releases.html

  • cuDNN >= 7.0 for CUDA >= 10.0https://developer.nvidia.com/rdp/cudnn-archive

  • GPU with CC >= 3.0https://en.wikipedia.org/wiki/CUDA#GPUs_supported

  • GCC

Linux上编译

下载YOLOv4源码,推荐使用Ubuntu 18.04

sudo apt-get install -y git

git clone https://github.com/AlexeyAB/darknet.git

配置Makefile文件中的参数,然后运行make -j8进行编译,具体参数解释如下:

  • GPU=1 使用CUDA和GPU(CUDA默认路径为/usr/local/cuda

  • CUDNN=1使用cuDNN v5-v7加速网络(cuDNN默认路径/usr/local/cudnn

  • CUDNN_HALF=1 使用Tensor Cores(可用GPU为Titan V / Tesla V100 / DGX-2或者更新的)检测速度3x,训练速度2x

  • OPENCV=1 使用OpenCV 4.x/3.x/2.4.x,运行检测视频和摄像机

  • DEBUG=1 编译调试版本

  • OPENMP=1 使用OpenMP利用多CPU加速

  • LIBSO=1 编译darknet.so

    • 使用uselib来运行YOLO,输入指令如下: LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4

    • 在自己的代码中嵌入YOLO,请参考例程: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp

  • ZED_CAMERA=1 增加ZED-3D相机的支持(需要先安装好ZED SDK)

    • 运行LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov4.cfg yolov4.weights zed_camera

常见编译问题

/bin/sh: 1: nvcc: not found

首先确保CUDA正确安装,并且在路径/usr/local/cuda下,然后输入如下指令:

echo "PATH=/usr/local/cuda/bin:$PATH" >> ~/.bashrc

source ~/.bashrc

include/darknet.h:46:10: fatal error: cudnn.h: No such file or directory

首先下载cuDNNhttps://developer.nvidia.com/rdp/cudnn-archive,需要根据自己的CUDA版本选择,然后解压,输入指令:

sudo cp -r cudnn-10.1-linux-x64-v7.6.5.32/cuda /usr/local/cudnn
2

运行代码

预训练模型

所有模型都是在MS-COCO数据集上训练,模型包括两个文件(cfgweights

R表示在RTX 2070设备上的FPS,V表示在Tesla V100设备上的FPS

百度网盘打包下载,链接:https://pan.baidu.com/s/1QQPB27n18XeRDnhHA2Gxuw,提取码:uill

  • yolov4.cfg - 245 MB: yolov4.weights

    • width=608 height=60865.7 AP@0.5 | 43.5 AP@0.5:0.95 - 34(R) FPS / 62(V) FPS - 128.5 BFlops

    • width=512 height=51264.9 AP@0.5 | 43.0 AP@0.5:0.95 - 45(R) FPS / 83(V) FPS - 91.1 BFlops

    • width=416 height=41662.8 AP@0.5 | 41.2 AP@0.5:0.95 - 55(R) FPS / 96(V) FPS - 60.1 BFlops

    • width=320 height=32060.0 AP@0.5 | 38.0 AP@0.5:0.95 - 63(R) FPS / 123(V) FPS - 35.5 BFlops

  • yolov3-tiny-prn.cfg - 18.8 MB: yolov3-tiny-prn.weights

    • width=416 height=41633.1 AP@0.5 - 370(R) FPS - 3.5 BFlops

  • enet-coco.cfg (EfficientNetB0-Yolov3) - 18.3 MB: enetb0-coco_final.weights

    • width=416 height=41645.5 AP@0.5 - 55(R) FPS - 3.7 BFlops

  • csresnext50-panet-spp-original-optimal.cfg - 217 MB: csresnext50-panet-spp-original-optimal_final.weights

    • width=608 height=60865.4 AP@0.5 | 43.2 AP@0.5:0.95 - 32(R) FPS - 100.5 BFlops

  • yolov3-spp.cfg - 240 MB: yolov3-spp.weights

    • width=608 height=60860.6 AP@0.5 - 38(R) FPS - 141.5 BFlops

  • yolov3.cfg - 236 MB: yolov3.weights

    • width=416 height=41655.3 AP@0.5 - 66(R) FPS - 65.9 BFlops

  • yolov3-tiny.cfg - 33.7 MB: yolov3-tiny.weights

    • width=416 height=41633.1 AP@0.5 - 345(R) FPS - 5.6 BFlops

可以在如下路径找到所有的cfg文件: darknet/cfg/

运行指令介绍

需要将训练好的weights文件放到darknet根目录下,运行如下指令:

  • 检测单张图像

./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -thresh 0.25
  • 检测给定路径的单张图像(参数最后的路径需要写待检测图像的路径)

./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -ext_output /home/jario/Pictures/h1.jpg
  • 检测给定路径的单个视频

./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights -ext_output test.mp4
  • 检测给定路径的单个视频,并将检测结果保存为视频

./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -out_filename res.avi
  • 利用摄像机实时检测(YOLOv4)

./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights -c 0
  • 利用摄像机实时检测(YOLOv3-Tiny)

./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -c 0
  • 在GPU1上检测给定路径的单个视频

./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -i 1 test.mp4
  • 检测列表data/train.txt中图像,并将结果保存在result.json

./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -ext_output -dont_show -out result.json < data/train.txt
  • 检测列表data/train.txt中图像,并将结果保存在result.txt

./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -dont_show -ext_output < data/train.txt > result.txt
3

如何训练

如何构建自己的训练数据

下载数据集标注工具,下载地址:(https://pan.baidu.com/s/1EE52cDStjIxsRgM_a9pWQQ) (password: 4b2q) 或者 Spire Web.

数据集管理软件github地址:https://github.com/jario-jin/spire-image-manager

打开标注软件 SpireImageTools_x.x.x.exe

首先点击Tools->Setting...,填写一个 save path (所有的标注文件都会存储在这个文件夹中)

如果采集的数据集是视频 (如果采集的是图像,则调过这一步骤),点击 Input->Video, 选择要标注的视频。

然后,点击Tools->Video to Image

点击OK 后,等待完成,结果会存储在

打开需要标注的图像

Input->Image Dir, 找到需要标注的图像所在文件夹 Ctrl+A,全选,打开

点击,Tools->Annotate Image->Instance Label,开始标注图像

在 label 中填写待标注目标名称,然后将对话框拖到一边在主窗口中开始标注,鼠标滚轮放大缩小图像,按住左键移动可视图像区域不断点击左键将目标框包围, 使用 Yolo 训练时,点击 2 个点即可

标注时,如果点错,按鼠标右键可以取消 标注完成后,如果不满意,可以点击绿色边框(边框会变红,如下图所示),按Delete 删除

将标注输出为 Yolo 格式,准备训练

在标注完成之后,按下 Ctrl+O

点击确定后

然后将下面 4 个文件取出用于 Yolo 训练

开始训练YOLO

使用YOLOv4和YOLOv3:

  1. 针对选择的模型,下载预训练权重:

    百度网盘打包下载,链接:https://pan.baidu.com/s/1CNVyyjoph7YVSXGT3vjbfQ,提取码:4usc

  • 对于 yolov4.cfgyolov4-custom.cfg (162 MB): yolov4.conv.137

  • 对于 csresnext50-panet-spp.cfg (133 MB): csresnext50-panet-spp.conv.112

  • 对于 yolov3.cfg, yolov3-spp.cfg (154 MB): darknet53.conv.74

  • 对于 yolov3-tiny-prn.cfg , yolov3-tiny.cfg (6 MB): yolov3-tiny.conv.11

  • 对于 enet-coco.cfg (EfficientNetB0-Yolov3) (14 MB): enetb0-coco.conv.132

  • cfg/yolov4-custom.cfg拷贝一份,重命名为yolov4-obj.cfgobj可以是自定义名称)

    • 修改batch为batch=64

    • 修改subdivisions为subdivisions=16

    • 修改max_batches为(类别数量*2000,但不要小于4000),如训练3个类别max_batches=6000

    • 修改steps为max_batches的0.8与0.9,如steps=4800,5400

    • 修改classes=80为自定义数据集的类别数量,主要需要修改3处(3个[yolo]层):

    • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L610

    • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L696

    • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L783

    • 修改filters=255filters=(classes+5)x3,在3个[yolo]层的前一个[convolutional]层,分别为:

    • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L603

    • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689

    • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776

    • 如果使用[Gaussian_yolo]层,修改filters=57filters=(classes+9)x3,在3个[Gaussian_yolo]层的前一个[convolutional]层,分别为:

      • https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L604

      • https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L696

      • https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L789

    • 例如,如果classes=1,则filters=18;如果classes=2,则filters=21。注意:不要cfg文件中直接写: filters=(classes+5)x3)

  • darknet/data路径下创建obj.names,其中每一行是一个目标类别名称

    • 将数据集标注得到的文件Yolo_categories.names重命名为obj.names,并放到darknet/data

  • darknet/data路径下创建obj.data

    教程 darknet 路径为 /home/user/darknet,本文以此为例,请根据自己的路径进行修改。在 /home/user/darknet/cfg/ 文件夹下新建一个文件,名字叫 obj.data 在里面写入:

  • classes = 1
    train = /home/user/darknet/data/coco/Yolo_20180908_234114.txt
    valid = /home/user/darknet/data/coco/Yolo_20180908_234114.txt
    names = data/obj.names
    backup = backup
    eval = coco

    注意:classes 为类别数量,对于单类检测问题,写 1

      5. 将图像文件(.jpg)与标注文件放入到如下路径darknet\data\coco\路径下

      • scaled_images里的图像拷贝到 /home/user/darknet/data/coco/images/train

      • Yolo_labels里的标注文件拷贝到/home/user/darknet/data/coco/images/train

      • Yolo_20180908_234114.txt拷贝到/home/user/darknet/data/coco

        6. 开始训练

        • 训练指令:./darknet detector train data/obj.data cfg/yolo-obj.cfg yolov4.conv.137

          (对于最新100次迭代的最新权重yolo-obj_last.weights会保存在darknet\backup\

          (对于每1000次迭代的权重yolo-obj_xxxx.weights会保存在darknet\backup\

          (关闭Loss的显示窗口./darknet detector train data/obj.data cfg/yolo-obj.cfg yolov4.conv.137 -dont_show

          (通过浏览器查看训练过程./darknet detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -dont_show -mjpeg_port 8090 -map,然后打开Chrome浏览器,输入http://ip-address:8090

          (如果需要在训练中计算mAP,每4期计算一次,需要在obj.data文件中设置valid=valid.txt,运行:./darknet detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -map

        7. 训练结束,结果保存在darknet\backup\yolo-obj_final.weights

          • 如果训练中断,可以选择一个保存的权重继续训练,使用./darknet detector train data/obj.data yolo-obj.cfg backup\yolo-obj_2000.weights

          注意:在训练中,如果avg(loss)出现nan,则训练出了问题,如果是其他字段出现nan,这种情况是正常的。注意:如果需要改变cfg文件中的width=height=,新的数字需要被32整除。注意:训练完成后,检测指令为:./darknet detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights。注意:如果出现Out of memory,需要修改cfg文件中的subdivisions=163264

          训练YOLOv3-Tiny

          训练YOLOv3-Tiny与选了YOLOv4、YOLOv3基本相同,主要有以下小区别:

          1. 下载yolov3-tiny预训练权重,运行命令./darknet partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15

          2. 新建自定义cfg文件yolov3-tiny-obj.cfg(可以复制cfg/yolov3-tiny.cfgyolov3-tiny-obj.cfg

          3. 运行训练命令:./darknet detector train data/obj.data yolov3-tiny-obj.cfg yolov3-tiny.conv.15

          多GPU训练

          1. 首先在1块GPU上训练1000次./darknet detector train cfg/coco.data cfg/yolov4.cfg yolov4.conv.137

          2. 停止训练,使用权重darknet/backup/yolov4_1000.weights,在多块GPU上训练,运行./darknet detector train cfg/coco.data cfg/yolov4.cfg /backup/yolov4_1000.weights -gpus 0,1,2,3

          注意:如果出现nan,应该降低学习率,如4块GPUlearning_rate=0.00065(learning_rate=0.00261/GPUs),还应该增加cfg文件中的burn_in=为原先的4x,如burn_in=4000

          训练常见程序问题

          注意:如果出现如下错误

          需要修改源码/home/user/darknet/src/data.c 将如下代码

          list *get_paths(char *filename)

          {  

          char *path;  

          FILE *file = fopen(filename, "r");  
          if(!file)    
          file_error(filename);  
          list *lines = make_list();  
          while((path=fgetl(file))) {    
          list_insert(lines, path);  
          }  
          fclose(file);  
          return lines;
          }

          修改为:

          void ltrim(char *s)

          {  

          char *p; p = s;  

          while (*p == ' ' || *p == '\t' || *p == '\r') { p++; } strcpy(s,p);

          }

          void rtrim(char *s)

          {  

          int i;  

          i = strlen(s) - 1;  

          while ((s[i] == ' ' || s[i] == '\t' || s[i] == '\r') && i >= 0 ) { i--; } s[i+1] = '\0';

          }

          void _trim(char *s)


          {  

          ltrim(s);  

          rtrim(s);

          }

          list *get_paths(char *filename)

          {  

          char *path;  

          FILE *file = fopen(filename, "r"); if(!file) file_error(filename); list *lines = make_list(); while((path=fgetl(file))) {  

          _trim(path); list_insert(lines, path);  

          }  

          fclose(file); return lines;

          }

          保存,make -j8重新编译 下面为正常训练时画面

          何时应该停止训练

          通常情况下,为每个类别迭代2000次是足够的,且总的迭代次数不能低于4000次。但是如果想要更加精确的停止时间,可以参考以下说明:

          1. 在训练过程中,你会看到一系列训练误差,当0.XXXXXXX avg这个参数不再下降时,就该停止训练了

          Region Avg IOU: 0.798363, Class: 0.893232, Obj: 0.700808, No Obj: 0.004567, Avg Recall: 1.000000, count: 8 Region Avg IOU: 0.800677, Class: 0.892181, Obj: 0.701590, No Obj: 0.004574, Avg Recall: 1.000000, count: 8 9002: 0.211667, 0.60730 avg, 0.001000 rate, 3.868000 seconds, 576128 images Loaded: 0.000000 seconds

          • 9002 - 迭代数量(batch数量)

          • 0.60730 avg - 平均损失(误差),越低越好

          如果发现0.XXXXXXX avg在很多次迭代后都不再降低,则是时候该停止训练了。最终的平均损失从0.05(对于小模型和简单训练数据)到3.0(对于大模型和复杂训练数据)不等。

          1. 当训练停止之后,可以从darknet\backup中取出最新保存的训练权重.weights,并选择它们中检测效果最好的

          例如,当训练9000次停止后,效果最好的模型可能是之前保存权重中的一个(7000,8000,9000),这是因为过拟合(Overfiting)现象。过拟合的表现可以解释为,在训练图像上检测效果很好,但是在其他图像上效果不佳,这时候就该尽早停止训练(早停点)。

          2.1 首先,你需要在obj.data中指定验证数据集valid=valid.txt,如果你没有准备验证数据集,可以简单的复制data\train.txtdata\valid.txt

          2.2 如果你在迭代9000次之后停止训练,验证之前的模型权重可以使用如下命令:

          • ./darknet detector map data/obj.data cfg/yolo-obj.cfg backup\yolo-obj_7000.weights

          • ./darknet detector map data/obj.data cfg/yolo-obj.cfg backup\yolo-obj_8000.weights

          • ./darknet detector map data/obj.data cfg/yolo-obj.cfg backup\yolo-obj_9000.weights

          然后对比每个权重(7000,8000,9000)最后一行输出,选择mAP(mean average precision)最高权重,或者对比IoU(intersect over union)进行选择。

          例如,yolo-obj_8000.weights的mAP最高,则使用这个权重。或者在训练时加上-map参数:

          ./darknet detector train data/obj.data cfg/yolo-obj.cfg yolov4.conv.137 -map

          结果如下图所示,mAP每4期(Epoch)通过obj.data中设置的验证集valid=valid.txt上计算一次(1期=train_txt中图像数量 / batch 次迭代)。

          运行训练好的模型,进行目标检测,执行:

          ./darknet detector test data/obj.data cfg/yolo-obj.cfg yolo-obj_8000.weights

          如何提升检测效果

          训练之前提升检测效果的技巧

          • 设置.cfg文件中random=1,可以使用多分辨率输入增加检测效果:link

          • .cfg文件中增加网络的输入分辨率(设置任意可以被32整除的数字,如,height=608width=608),可以增加精度

          • 检查图像每个目标是否都被标记,图像中的所有目标都必须被正确标记,推荐使用数据管理工具检查:spire-image-manager

          • Loss很大,mAP很低,是不是训练错了?在训练中使用-show_imgs参数,能够可视化目标框真值,检查数据集是否出了问题。

          • 对于每一个你要检测的物体,在训练数据集中至少需要有一个实例与之相似,包括:形状、物体侧面、相对大小、旋转角度、倾斜方位角、光照等。因此,你的训练数据集需要包含具有不同对象属性的图像:比例、旋转、光照、不同侧面、不同背景等。建议对每一类物体收集2000张不同图像,并迭代训练2000*类别数量次。

          • 推荐在训练数据集中包含带有不希望检测的非标记目标的图像。负样本图像不需要方框标记(空.txt文件),越多越好。

          • 标注目标的最佳方式是:仅标注物体的可见部分,或标注物体的可见和重叠部分,或标注比整个物体稍多一点的部分(有一点间隙),标注你想让检测器检测的部分。

          • 如果单幅图像中的物体很多,需要在[yolo]层或[region]层中修改参数max=200或者更高(全局最大目标检测数量为0,0615234375*(width*height))。

          如果想要检测小目标(图像被缩放到416*416后,小于16*16的目标)

          • https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L895修改`layers = 23`

          • https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L892修改`stride=4`

          • https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L989修改`stride=4`

          • 如果想要同时检测大目标与小目标,可以使用修改模型:

            • 全模型 - 5个yolo层:https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3_5l.cfg

            • 小模型 - 3个yolo层:https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny_3l.cfg

            • YOLOv4 - 3个yolo层:https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-custom.cfg

          • 如果你训练的数据类别需要区分左右目标(如检测左右手,交通信号中的左右方向),则不能使用左右翻转图像增强,在cfg文件中设置flip=0https://github.com/AlexeyAB/darknet/blob/3d2d0a7c98dbc8923d9ff705b81ff4f7940ea6ff/cfg/yolov3.cfg#L17

          • 一般规则 - 您的训练数据集应包含待检测目标的相对大小的集合:

            • train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width

            • train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height

            也就是,对于测试数据集中的每个物体,训练数据集中必须至少有一个具有相同类与大约相同相对大小的物体。如果训练数据中仅有占图像面积80-90%的物体,则训练后的网络不能够检测占图像面积1-10%的物体。

          • 如果想加速训练(损失检测精度),可以在cfg文件layer-136中设置参数stopbackward=1

          • 注意物体的模型、侧面、光照、尺度、方位角等属性,从神经网络的内部角度来看,这些是不同的物体。因此,你想检测的物体越多,就应该使用越复杂的网络模型。

          • 如果想要外包矩形框更加精确,可以在[yolo]层中增加3个参数:ignore_thresh=.9 iou_normalizer=0.5 iou_loss=giou,这会增加mAP@0.9,同时降低mAP@0.5。

          • 如果你比较熟悉检测网络了,可以重新计算自定义数据集的锚框(Anchor):./darknet detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416,然后设置cfg文件中3个[yolo]层9个锚框。同时需要改变每个[yolo]层中的锚框索引mask=,第一层有大于60*60的锚框,第二层有大于30*30的锚框,第三层相同。也需要改变每个[yolo]层之前的filters=(classes + 5)*。如果许多计算出的锚框不适合在适当的层下 - 那么就尝试使用默认锚框。

          训练之后提升检测效果的技巧

          • 增加cfg文件中网络输入的分辨率,如,height=608width=608,或height=832width=832,这样可以检测更小的目标。

          4

          如何将训练好的模型部署到无人机上

          TX2上的准备工作

          • 推荐使用Ubuntu 18.04(可以使用JetPack刷机)

          • CMake >= 3.8https://cmake.org/download/

          • CUDA >= 10.0https://developer.nvidia.com/cuda-toolkit-archive

          • cuDNN >= 7.0 for CUDA >= 10.0https://developer.nvidia.com/rdp/cudnn-archive

          • OpenCV >= 2.4https://opencv.org/releases.html

          • GCC

          • ROS Melodichttp://wiki.ros.org/melodic/Installation

          使用JetPack为TX2安装CUDA与cuDNN

          • 下载JetPack,地址:https://developer.nvidia.com/embedded/jetpack

          • 进入 sdkmanager-[version].[build].deb 所在的路径,其中version和build代表相应各自的编号,安装Debian包:

          sudo apt install ./sdkmanager-[version].[build].deb
          • 安装好之后,在Terminal中输入

          sdkmanager
          • 使用NVIDIA账号登录

          • 选择开发环境

            • 在 Product Category 中选择 Jetson.

            • 在 Hardware Configuration 中选择 target hardware(Jetson TX2),勾掉 host machine

            • 在 Target Operating System 中选择 JetPack 的版本.

            • 点击CONTINUE进入下一步

          • 检查下载组件(如果仅安装CUDA和cuDNN,则只勾选红圈内的选项)、选择存储路径以及接收条款

          • 保证Host计算机与TX2在同一局域网内,输入TX2的IP地址就可以安装

          部署Darknet-ROS

          • 下载darknet_ros源码

          cd ~
          cd catkin_ws/src

          git clone --recursive https://github.com/leggedrobotics/darknet_ros.git

          cd ../

          • 编译

          catkin_make -DCMAKE_BUILD_TYPE=Release
          • 将训练好的cfg和weights加载到darknet_ros中

          /home/user/darknet/cfg/yolov3-tiny.cfg/home/user/darknet/backup中刚刚训练好的参数 分别拷贝到/home/user/catkin_ws/src/darknet_ros/darknet_ros/yolo_network_config中的cfgweights两个文件夹中 在/home/user/catkin_ws/src/darknet_ros/darknet_ros/config文件夹中新建yolov3-tiny-obj.yaml

          里面写入

          yolo_model:  

          config_file:    

          name: yolov3-tiny-obj.cfg  

          weight_file:    

          name: yolov3-tiny-obj.weights  

          threshold:    

          value: 0.3  

          detection_classes:    

          names:      

          - drone

          注意,在yolov3-tiny-obj.yaml文件中,需要指定刚才拷贝的cfgweights文件以及names为自己训练的类别

          /home/user/catkin_ws/src/darknet_ros/darknet_ros/launch文件夹中,复制一份darknet_ros.launch,重命名为obj_det.launch 修改里面的

          注意:这正式刚才编写的yaml文件

          roslaunch darknet_ros obj_det.launch

          注意:进行检测,需要先打开一个ros_web_cam节点,以提供摄像头数据

          最后,给一张YOLOv4检测结果的样张吧

          来源:新机器视觉


          申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


           

          ----与智者为伍 为创新赋能----


          【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
          诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
          投稿丨合作丨咨询

          联系邮箱:uestcwxd@126.com

          QQ:493826566



          评论
          • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
            coyoo 2024-12-03 12:20 108浏览
          • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
            esad0 2024-12-04 11:20 50浏览
          • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
            紫光展锐 2024-12-03 11:38 101浏览
          • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
            刘旷 2024-12-02 09:32 119浏览
          • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
            youyeye 2024-12-02 23:58 71浏览
          • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
            晶台光耦 2024-12-02 10:40 120浏览
          • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
            丙丁先生 2024-12-01 17:37 100浏览
          • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
            Industio_触觉智能 2024-12-03 11:28 84浏览
          •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
            锦正茂科技 2024-12-03 11:50 106浏览
          • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
            万象奥科 2024-12-03 10:24 68浏览
          我要评论
          0
          点击右上角,分享到朋友圈 我知道啦
          请使用浏览器分享功能 我知道啦