电源的EMI传导和辐射都超标了,老师傅给了我90种整改方法,果断收藏起来!

硬件笔记本 2024-09-12 07:37

点击上方名片关注了解更多


大家好,我是王工。如果开关电源EMI总是过不了,快来看看下面这些实用的整改策略吧!

EMI传导频段:1MHZ 以内
以差模干扰为主
整改策略:
1、150KHZ-1MHz,以差模为主,1-5MHz,差模和共模共同起作用,5MHz 以后基本上是共模。差模干扰的分容性藕合和感性藕合。一般 1MHZ 以上的干扰是共模,低频段是差摸干扰。用一个电阻串个电容后再并到 Y 电容的引脚上,用示波器测电阻两引脚的电压可以估测共模干扰;
2、保险过后加差模电感或电阻;
3、小功率电源可采用 PI 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
4、前端的π型 EMI 零件中差模电感只负责低频 EMI,体积別选太大(DR8 太大,能用电阻型式或 DR6 更好)否則幅射不好过,必要时可串磁珠,因为高频会直接飞到前端不会跟着线走。
5、传导冷机时在 0.15-1MHZ 超标,热机时就有 7dB 余量。主要原因是初级 BULK 电容 DF 值过大造成的,冷机时 ESR 比较大,热机时 ESR 比较小,开关电流在 ESR 上形成开关电压,它会压在一个电流 LN 线间流动,这就是差模干扰。解决办法是用 ESR 低的电解电容或者在两个电解电容之间加一个差模电感。
6、测试 150KHZ 总超标的解决方案:加大 X 电容看一下能不能下来,如果下来了说明是差模干扰。如果没有太大作用那么是共模干扰,或者把电源线在一个大磁环上绕几圈, 下来了说明是共模干扰。如果干扰曲线后面很好,就减小 Y 电容,看一下布板是否有问题,或者就在前面加磁环。
7、可以加大 PFC 输入部分的单绕组电感的电感量。
8、PWM 线路中的元件将主频调到 60KHZ 左右。
9、用一块铜皮紧贴在变压器磁芯上。
10、共模电感的两边感量不对称,有一边匝数少一匝也可引起传导 150KHZ-3MHZ 超标。
11、一般传导的产生有两个主要的点:200K 和 20M 左右,这几个点也体现了电路的性能;200K 左右主要是漏感产生的尖刺;20M 左右主要是电路开关的噪声。处理不好变压器会增加大量的辐射,加屏蔽都没用,辐射过不了。
12、将输入 BUCK 电容改为低内阻的电容。
13、对于无 Y-CAP 电源,绕制变压器时先绕初级,再绕辅助绕组并将辅助绕组密绕靠一边,后绕次级。
14、将共模电感上并联一个几K到几十K电阻。
15、将共模电感用铜箔屏蔽后接到大电容的地。
16、在 PCB 设计时应将共模电感和变压器隔开一点以免互相干扰。
17、保险套磁珠。
18、三线输入的将两根进线接地的 Y 电容容量从 2.2nF 减小到 471。
19、对于有两级滤波的可将后级 0.22uFX 电容去掉 。
20、对于π型滤波电路有一个 BUCK 电容躺倒放在 PCB 上且靠近变压器此电容对传导 150KHZ-2MHZ 的L通道有干扰,改良方法是将此电容用铜泊包起来屏蔽接到地,或者用一块小的 PCB 将此电容与变压器和 PCB 隔开。或者将此电容立起来, 也可以用一个小电容代替。
21、对于π型滤波电路有一个 BULK 电容躺倒放在 PCB 上且靠近变压器此电容对传导 150KHZ-2MHZ 的L通道有干扰,改良方法是将此电容用一个 1uF/400V 或者说 0.1uF/400V 电容代替, 将另外一个电容加大。
22、将共模电感前加一个小的几百 uH 差模电感。
23、将开关管和散热器用一段铜箔包绕起来,并且铜箔两端短接在一起,再用一根铜线连接到地。
24、将共模电感用一块铜皮包起来再连接到地。
25、将开关管用金属套起来连接到地。
26、加大 X2 电容只能解决 150K 左右的频段,不能解决 20M 以上的频段,只有在电源输入加以一级镍锌铁氧体黑色磁环,电感量约 50uH-1mH。
27、在输入端加大 X 电容。
28、加大输入端共模电感。
29、将辅助绕组供电二极管反接到地。
30、将辅助绕组供电滤波电容改用瘦长型电解电容或者加大容量。
31、加大输入端滤波电容。
32、150KHZ-300KHZ 和 20MHZ-30MHZ 这两处传导都不过,可在共模电路前加一个差模电路。也可以看看接地是否有问题,该接地的地方一定要加强接牢,主板上的地线一定要理顺,不同的地线之间走线一定要顺畅不要互相交错的。
33、在整流桥上并电容,当考虑共模成分时,应该邻角并电容,当考虑差模成分时,应该对角并电容。
34、加大输入端差模电感。


EMI传导频段:1MHZ---5MHZ
采用输入端并联一系列 X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决。
整改策略:
1、对于差模干扰超标可调整 X 电容量,添加差模电感器,调差模电感量。
2、对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;
3、也可改变整流二极管特性来处理一对快速二极管如 FR107 一对普通整流二极管 1N4007。
4、对于有 Y 电容的电源,干扰在 1M 以前以差模为主,2-5M 是差模和共模干扰。对于 NO-Y 来说,情况不一样,1M 以前的共模也非常厉害。在前面加很多 X 电容,滤光差模,改不改变压器对差模没有影响了,如果还有变化,就是共模了。差共模分离的方法:在 AC 输入端加很多 X 电容,从小到大,这样可以把差模滤去,剩下的就是共模了,再与总的噪音相比较,就能看出差模的大小。
5、绕制变压器时将所有同名端放在一边,可降低 1.0MHZ-5.0MHZ 传导干扰。
6、对于小功率用两个差模电感,减少差模电感匝数可降低传导 1.2MHZ 干扰。
7、加大 Y 电容,可降低传导中段 1MHZ-5MHZ 干扰。
8、对于无Y电容的开关电源 EMI 在 1MHZ-6MHZ 超标,如加了Y电容后 EM 降下来了的话,就可在变压器初次级间加多几层胶纸。
9、将 MOS 管散热片接 MOS 管 S 极。
10、在输入端滤波电容上并联小容量高压瓷片或者高压贴片电容。


EMI传导频段:5M---20MHZ
以共摸干扰为主,采用抑制共摸的方法。
整改策略:
1、对于外壳接地的,在地线上用一个磁环串绕 2-3 圈会对 10MHZ 以上干扰有较大的衰减作用;
2、可选择紧贴变压器的铁芯粘铜箔,铜箔要闭环。
3、处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
4、在变压器初级绕组上用一根很细的三重绝缘线并绕一个屏蔽绕组,屏蔽绕组的一端接电源端另外一端通过一个电容接到地。
5、可将共模电感改为一边匝数比另一边多一匝,另其有差模的作用。
6、将开关管 D 极加一小散热片且必需接高压端的负极,变压器的初级起始端连接到 MOS 管 D 极。
7、将次级的散热片用一个 102 的 Y 电容接到初级的 L/N 线, 可降低导干扰。
8、如果加大Y电容传导干扰下来了,则可以改变变压器绕法来改良,可在初次级间加多几层胶带;如果加大Y电容传导干扰未改善,就要改电路可改好不必改变压器绕法。
9、将变压器电感量适当加大,可降低 RCC 开关电源在半载时的传导干扰。
10、用变压器次级辅助绕组来屏蔽初级主绕组,比用变压器初级辅助绕组来屏蔽初级主绕组,传导整体要好得多。
11、传导整体超标,用示波器看开关管 G 和 D 极波形都有重叠的现象,光藕供电电阻从输出滤波共模电感下穿过接输出正极改接不从大电流下穿过后一切 OK。
12、在输入端 L 线和 N 线各接一 681/250V 的 Y 电容,Y 电容另外一端接次级地。
13、将次级的辅助绕组用来屏蔽初级主绕组,可降低传导 3-15MHZ 干扰。用次级的辅助绕组来屏蔽初级主绕组,比用初级的辅助绕组来屏蔽初级主绕组传导要好得多。
14、在 PCB 板底层放一层铜片接初级大电容负极。
15、将整个电源用一块铜片包起来, 铜片接初级大电容负极。
16、减小 Y 电容容量。


EMI传导频段:20--30MHZ
整改策略:
1、对于一类产品可以采用调整对地 Y2 电容量或改变 Y2 电容位置;
2、调整一二次侧间的 Y1 电容位置及参数值;
3、在变压器外面包铜箔,变压器最里层加屏蔽层,调整变压器的各绕组的排布。
4、改变 PCB LAYOUT;
5、输出线前面接一个双线并绕的小共模电感;
6、在输出整流管两端并联 RC 滤波器且调整合理的参数;
7、在变压器与 MOSFET 之间加磁珠;
8、在变压器的输入电压脚加一个小电容。
9、可以用增大 MOS 驱动电阻。
10、可能是电子负载引起的,可改用电阻负载。
11、可将 MOS 管 D 端对地接一个 101 的电容。
12、可将输出整流二极管换一个积电容小一点的。
13、可将输出整流二极管的 RC 回路去掉。
14、将输入端加两个 Y 电容对地,可降低传导 25MHZ-30MHZ 干扰。
15、紧贴变压器的磁芯上加一铜皮,铜皮连接到地。
16、传导后段 25MHZ 超标可在输出端加共模电感,也可在开关管源极检测电阻上套一长的导磁力合适的磁珠。

EMI辐射频段:30---50MHZ
普遍是 MOS 管高速开通关断引起
整改策略:
1、可以用增大 MOS 驱动电阻;
2、RCD 缓冲电路采用 1N4007 慢管;
3、VCC 供电电压用 1N4007 慢管来解决;
4、或者输出线前端串接一个双线并绕的小共模电感;
5、在 MOSFET 的 D-S 脚并联一个小吸收电路;
6、在变压器与 MOSFET 之间加 BEAD CORE;
7、在变压器的输入电压脚加一个小电容;
8、PCB LAYOUT 时大电解电容,变压器,MOS 构成的电路环尽可能的小;
9、变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。

EMI辐射频段:50---100MHZ
普遍是输出整流管反向恢复电流引起
整改策略:
1、可以在整流管上串磁珠;
2、调整输出整流管的吸收电路参数;
3、可改变一二次侧跨接 Y 电容支路的阻抗,如 PIN 脚处加 BEAD CORE 或串接适当的电阻;
4、也可改变 MOSFET,输出整流二极管的本体向空间的辐射(如铁夹卡 MOSFET; 铁夹卡 DIODE,改变散热器的接地点)。

5、增加屏蔽铜箔抑制向空间辐射 200MHZ 以上开关电源已基本辐射量很小,一般可过 EMI 标准。

声明:


声明:文章来源EEDesign。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。
投稿/招聘/推广/宣传/技术咨询 请加微信:woniu26a

推荐阅读

  • 电路设计-电路分析

  • EMC相关文章

  • 电子元器件

后台回复“加群,管理员拉你加入同行技术交流群。

硬件笔记本 一点一滴,厚积薄发。
评论 (0)
  •   电磁兼容(EMC)故障诊断系统软件解析   北京华盛恒辉电磁兼容故障诊断系统软件是攻克电子设备电磁干扰难题的专业利器。在电子设备复杂度攀升、电磁兼容问题频发的背景下,该软件于研发、测试、生产全流程中占据关键地位。以下为其详细介绍:   应用案例   目前,已有多个电磁兼容故障诊断系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁兼容故障诊断系统。这些成功案例为电磁兼容故障诊断系统的推广和应用提供了有力支持。   一、软件核心功能   干扰与敏感分析:深度剖析电磁干
    华盛恒辉l58ll334744 2025-04-22 14:53 84浏览
  •   电磁兼容故障诊断系统平台深度解析   北京华盛恒辉电磁兼容(EMC)故障诊断系统平台是解决电子设备在复杂电磁环境下性能异常的核心工具。随着电子设备集成度提升与电磁环境复杂化,EMC 问题直接影响设备可靠性与安全性。以下从平台架构、核心功能、技术实现、应用场景及发展趋势展开全面剖析。   应用案例   目前,已有多个电磁兼容故障诊断系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁兼容故障诊断系统。这些成功案例为电磁兼容故障诊断系统的推广和应用提供了有力支持。  
    华盛恒辉l58ll334744 2025-04-22 14:29 87浏览
  •   电磁干扰抑制系统平台深度解析   一、系统概述   北京华盛恒辉电磁干扰抑制系统在电子技术快速发展、电磁环境愈发复杂的背景下,电磁干扰(EMI)严重影响电子设备性能、稳定性与安全性。电磁干扰抑制系统平台作为综合性解决方案,通过整合多元技术手段,实现对电磁干扰的高效抑制,确保电子设备稳定运行。   应用案例   目前,已有多个电磁干扰抑制系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰抑制系统。这些成功案例为电磁干扰抑制系统的推广和应用提供了有力支持。   二
    华盛恒辉l58ll334744 2025-04-22 15:27 87浏览
  • 据国际精益六西格玛研究所(ILSSI)成员大卫·哈钦斯(David Hutchins)的回忆,在“六西格玛”名称出现前,摩托罗拉组建了约100个质量改进团队,接受朱兰博士制作的16盘录像带培训,名为《朱兰论质量改进》(Juran on Quality Improvement),为了推广这种严谨的分析方法(朱兰博士视频中的核心内容),摩托罗拉前首席执行官鲍勃·加尔文创造了“六西格玛”这一标签,用以表彰这种“最顶尖"的方法。大卫·哈钦斯(David Hutchins)是朱兰博士的好友,也为他的工作做
    优思学院 2025-04-22 12:03 72浏览
  •   卫星通信效能评估系统平台全面解析   北京华盛恒辉卫星通信效能评估系统平台是衡量卫星通信系统性能、优化资源配置、保障通信服务质量的关键技术工具。随着卫星通信技术的快速发展,特别是低轨卫星星座、高通量卫星和软件定义卫星的广泛应用,效能评估系统平台的重要性日益凸显。以下从技术架构、评估指标、关键技术、应用场景及发展趋势五个维度进行全面解析。   应用案例   目前,已有多个卫星通信效能评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星通信效能评估系统。这些成功案例为卫
    华盛恒辉l58ll334744 2025-04-22 16:34 75浏览
  • 引言:工业安全与智能化需求的双重驱动在工业安全、环境保护及家庭安防领域,气体泄漏引发的安全事故始终是重大隐患。随着传感器技术、物联网及语音交互的快速发展,气体检测报警器正朝着智能化、低成本、高可靠的方向演进。WT588F02B-8S语音芯片,以“离在线语音更换+多协议通信”为核心优势,为气体检测报警器提供了一套高效、灵活的低成本语音解决方案,助力开发者快速响应市场需求。产品功能与市场需求1. 核心功能:从监测到预警的全流程覆盖实时气体监测:支持一氧化碳、臭氧、硫化氢等多种气体浓度检测,精度可达p
    广州唯创电子 2025-04-22 09:14 68浏览
  •   北京华盛恒辉机场保障能力评估系统软件深度解析   在航空运输业快速发展的背景下,机场保障任务愈发复杂,传统人工评估方式已无法满足高效精准的管理需求。机场保障能力评估系统软件作为提升机场运行效率、保障飞行安全的关键工具,其重要性日益凸显。   应用案例   目前,已有多个机场保障能力评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润机场保障能力评估系统。这些成功案例为机场保障能力评估系统的推广和应用提供了有力支持。   一、系统功能模块   数据采集与整合模块  
    华盛恒辉l58ll334744 2025-04-22 10:28 89浏览
  • 近期,金融界消息称,江西万年芯微电子有限公司申请一项名为“基于预真空腔体注塑的芯片塑封方法及芯片”的专利。此项创新工艺的申请,标志着万年芯在高端芯片封装领域取得重要突破,为半导体产业链提升注入了新动能。专利摘要显示,本发明公开了一种基于预真空腔体注塑的芯片塑封方法,方法包括将待塑封的大尺寸芯片平铺于下模盒腔体内的基板并将大尺寸芯片的背向表面直接放置于基板上以进行基板吸附;将上模盒盖合于下模盒形成塑封腔,根据基板将塑封腔分为上型腔以及下型腔;将下型腔内壁与大尺寸芯片间的空隙进行树脂填充;通过设置于
    万年芯 2025-04-22 13:28 74浏览
  • 4 月 19 日,“增长无界・智领未来” 第十六届牛商大会暨电子商务十大牛商成果报告会在深圳凤凰大厦盛大举行。河南业之峰科技股份有限公司总经理段利强——誉峰变频器强哥凭借在变频器领域的卓越成就,荣膺第十六届电子商务十大牛商,携誉峰变频器品牌惊艳亮相,以十几年如一日的深耕与创新,书写着行业传奇。图 1:誉峰变频器强哥在牛商大会领奖现场,荣耀时刻定格牛商大会现场,誉峰变频器强哥接受了多家媒体的专访。面对镜头,他从容分享了自己在变频器行业二十年的奋斗历程与心路感悟。谈及全域营销战略的成功,誉峰变频器强
    电子与消费 2025-04-22 13:22 100浏览
  •   北京华盛恒辉基于GIS的电磁态势可视化系统软件是将地理空间信息与电磁态势数据相结合,通过图形化手段直观展示电磁环境态势的系统。这类软件在军事、通信、无线电管理等领域具有广泛应用,能够辅助用户进行电磁频谱分析、干扰监测、态势研判和决策支持。以下是关于此类系统的详细介绍:   应用案例   目前,已有多个电磁态势可视化系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁态势可视化系统。这些成功案例为电磁态势可视化系统的推广和应用提供了有力支持。   一、系统功能   电磁
    华盛恒辉l58ll334744 2025-04-22 11:44 78浏览
我要评论
0
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦