电源——LDO环路稳定性及其对射频频综相噪的影响

ittbank 2020-12-23 00:00

摘要

相位噪声是时钟、射频频综最为关注的技术指标之一。影响锁相环相噪的因素有很多,比如电源、参考源相噪、VCO 自身的相噪、环路滤波器的设置等。其中,电源引入的低频噪声往往对锁相环的近端相噪有着很大的影响。对于高性能的时钟和射频频综产品,为了获得极低的相噪性能,往往采用低噪声的LDO 供电。然而,采用不同的LDO 给频综供电,取得的相噪性能往往会有很大差别,同时,LDO 外围电路设计也会影响到频综的相噪性能。

本文首先简要地介绍了LDO 的噪声来源及环路稳定性对输出噪声的影响;其次,根据调频理论推导出VCO 的相位噪声与LDO 的噪声频谱密度的理论计算关系。在此基础上,为了验证LDO 噪声对射频频综输出相噪的影响,分别采用TPS7A8101 和TPS74401 LDO 评估板给TRF3765 射频频综评估板供电,对比测试这两种情况下的TRF3765 相噪曲线;同时,为了验证LDO 环路稳定性对频综相噪的影响,针对TPS7A8101 评估板的参考电路做出部分修改,并对比测试了电路修改前后的TRF3765 输出相噪。

1LDO 噪声来源及环路稳定性对输出噪声影响

1.1 LDO 噪声来源

LDO 的噪声分为LDO 内部的噪声和LDO 外部的噪声。LDO 内部的噪声来自于内部电路的带隙基准源,放大器以及晶体管。LDO 外部的噪声来自于输入。在LDO 的手册中,PSRR 是表征LDO抑制外部噪声的能力,但PSRR 高并不代表LDO 内部噪声小。LDO 的总输出噪声才是表征LDO内部噪声抑制的参数,一般在电气特性表里用单位µVRMS 表示,或者在噪声频谱密度图上表示。

图2 是LDO 内部结构框图,VN 代表等效噪声源。噪声源包括带隙基准源产生的噪声VN (REF) ,误差放大器产生的噪声VN (AMP) ,FET 产生的噪声VN (FET) 以及反馈电阻产生的噪声VN ( R1) 和VN ( R2) 。在大多数情况下,由于带隙基准源电路是由很多不同的电阻、晶体管和电容组成,它所产生的噪声会远远大于反馈电阻产生的噪声。而且带隙基准源是误差放大器的输入,它所产生的噪声也会经由误差放大器放大来控制FET,所以误差放大器本身以及FET 所产生的噪声也会比带隙基准源的噪声要低。可以说,LDO 内部最大的噪声源就是带隙基准源。我们把LDO 输出噪声VN (OUT) 表示为

VN ( Other) 是VN ( AMP) 以及VN (FET) 的和。由公式1 可以得出,输出噪声最小值出现在R1 短接到FB,误差放大器的增益近似为1 的时候。

1.2 LDO 噪声抑制方法

为了抑制带隙基准源产生的噪声,有三种办法。

一是降低误差放大器的带宽,抑制了带隙基准源的高频噪声。但是降低带宽会使LDO 的动态性能降低。

二是在带隙基准源和误差放大器之间加低通滤波。高性能的LDO 都会有一个噪声抑制NR 管脚,CNR 并联在带隙基准源和GND 之间,起到低通滤波的作用。如图3 所示。

三是在反馈电阻R1 上增加前馈电容CFF 。在增加了CFF 和CNR 后,输出噪声可以表示为


从式2 可以得出,CFF 越大,输出噪声就越小。频率越高,输出噪声越小。

图4 是不同CFF 下的噪声频谱密度图。可以看出,CFF 越大,噪声从低频开始都能被很好的抑制。CFF 太小的时候,抑制噪声的作用就不太明显。当频率很高的时候,不管用多大的CFF ,噪声频谱密度相差不会太大。所以,增加合适的前馈电容CFF ,对改善LDO 低频噪声有非常好的效果。

1.3 LDO 环路稳定性与输出噪声的关系

从LDO 的小信号分析可以看出,LDO 有两个低频极点,如果没有合适的零点补偿,LDO 的稳定裕度不够,就有可能产生震荡。稳定裕度不够的LDO 产生的内部噪声会更大。上节中提到第三种噪声抑制方法,即增加前馈电容CFF 是实际上为了改善系统稳定裕度。由CFF 与R1组成一个低频零点,

由下图的频率响应可以看出,零点是相位裕度有了很大的提升,增加了系统稳定性,从而减小了系统低频噪声。

2LDO 噪声与VCO 输出相噪的关系

电源引入噪声对锁相环中各个有源器件都可能造成影响,其中最为敏感的部分是VCO,本文将着重讨论LDO 输出噪声对VCO 相噪的影响。

一个典型的LDO 供电的频综系统框图如图7 所示:加载在电源上的噪声信号通过频率调制过程调制到VCO 的输出,造成VCO 输出相噪恶化。


根据经典调频系统理论,调制指数β由式(3)来表示


对于电源噪声调制,式中的频率背离(Frequency Deviation)可由下式得到

式中,Kpush 是VCO 的电源推压指数,它表征的是VCO 对电源噪声波动的灵敏度,单位用MHz/V 来表示;A 是电源噪声信号幅度。

对于采用LDO 供电的射频频综来说,通常用LDO 的指定频率偏移的频谱噪声密度Sldo(f)(Noise Spectrum Density)来表征电源噪声,由于它是一个RMS 电压值,所以式(4)可以表示为

将式(5)带入式(3),可以得到

式中,f 是相应的频率偏移。

由不同频率成分噪声调制到载波输出引起的单边带噪声,由下式表示

将式(6)带入式(7)有

由式(8)可见,对于给定的VCO,由于Kpush 是一个确定的值,因此由LDO 噪声引起的VCO 输出相噪是由LDO 的噪声频谱密度(Noise Spectrum Density)决定的。

3、采用不同LDO 进行射频频综供电对比测试

3.1 TPS7A8101/TPS74401 频综供电对比测试

TPS7A8101 和TPS74401 是TI 推出的两款高性能LDO 芯片。与TPS74401 相比, 由于具有更高的环路增益和带宽,TPS7A8101 具有更高的电源噪声抑制比(PSRR);然而,由于具有更好的系统稳定性,TPS74401 拥有更低的噪声频谱密度(NSD),如下图8 所示。

下面我们分别采用TPS7A78101 和TPS74401 评估板对TRF3765 评估板进行供电,比较两者的输出相噪。测试设置如下图9 所示,LDO 的输入5V 电源由Agilent E3634 提供,通过LDO 评估板后转变成3.3V 给TRF3765 供电。TRF3765 采用评估板上自带的61.44MHZ 晶振作为参考输入,输出频率为2.28GHz。TRF3765 的射频输出连到R&S FSQ8 相噪分析仪上测试相应的相噪曲线。

两者对比测试结果如下图10 所示,

由上图看见,采用TPS7A8101 供电,TRF3765 在整个积分区间内(1KHz~10MHz)的RMS 抖动为0.62ps;而TPS74401 的RMS 抖动仅为0.44ps。

3.2 TPS7A8101 输出电路优化及其对频综相噪的影响

TPS7A8101 评估板初始原理图如图11 所示,由上节的测试结果可知,采用该电路给TRF3765供电,RMS 抖动为0.62ps。

第一章中我们已经讨论了LDO 加一个前馈电容可以有效的提高电源的环路稳定性,从而降低LDO 的输出噪声频谱密度。基于此,我们在TPS7A8101 输出加一个0.47 µF 的前馈电容,修改后的原理图如下图12 所示。

针对修改前后的设计,我们对比测试了相应的TRF3765 相噪曲线,如图13 所示,由图可见,增加0.47 µF 输出电容后,1KHz 到10MHz 的RMS 抖动由0.62ps 提高到0.49ps。

结论

综合以上两组测试的测试结果,可以得到下表

由表1 可以看到,由于TPS74401 的噪声频谱密度最小,在给频综供电的时候可以取得最好的相噪性能;TPS7A8101 噪声频谱密度相对较大,在给频综供电的时候取得的相噪性能相对较差;但是通过优化TPS7A8101 的输出电路设计,频综的相位噪声得到了明显的改善。

实测结果很好的验证了前文的理论分析,即:LDO 的噪声频谱密度参数(NSD)决定了由电源噪声引起的VCO 相噪恶化;通过提高LDO 的环路稳定性可以达到降低噪声频谱密度的目的,从而改善频综的输出相噪。


来源:硬十

ittbank 让电子库存因技术而改变的ITT模式电商平台。引领和适应市场,以共享经济理念的创客及工程师为核心、以免费开放用户生成的数据为基础,为其提供高性价比的应用解决方案和及时精准的供求信息,快速提高产品开发周期和生产直通率、提升电子器件的应用附加值。
评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 115浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 128浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 37浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 150浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 48浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 33浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 37浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 126浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 37浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 50浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦