【中国汽车线控技术专家委员会】汽车线控驱动技术分析|50+篇线控文章

智享新汽车 2024-09-05 22:11

媒体运营知识付费产业合作咨询服务

50万+汽车爱好者都在关注的公众号 


今日推荐
↓↓↓
点击下方链接下单
电动汽车智能底盘技术路线图》本路线图主要包括五部分内容:部分重点介绍了汽车底盘技术现状及发展趋势、智能底盘技术范围及基本属性、智能底盘总体路线图;第二部分重点介绍了乘用车智能底盘技术路线图、构型组成要素、控制和冗余;第三部分重点介绍了商用车智能底盘技术路线图、构型组成要素、控制和冗余;第四部分重点介绍了线控制动系统和线控转向系统技术路线图;第五部分重点介绍了智能底盘开发测试平台与标准规范技术路线图。本路线图旨在通过对电动汽车智能底盘关键技术体系的梳理和预判,厘清智能底盘技术的发展方向和关键指标,为实现电动汽车智能底盘产业的快速发展提供有力支撑。如需进入中国汽车线控技术专家委员会微信群,请添加管理员圈圈哥微信GSAuto0001

来源: 汽车人高工@知乎、cdmotor

1 线控驱动系统发展现状


• 针对内燃机汽车,线控油门系统已取代传统油门系统,市面上99%以上的车型都配线控油门系统;


• 针对新能源汽车,目前主流的驱动方案有集中电机驱动和分步电机驱动,目前集中电机驱动方案得到了大量的 应用,但正朝着以轮边和轮毂电机为代表的分布电机驱动形式发展。


集中电机驱动


• 单电机驱动结构主要由电动机、减速器、传动半轴和差速器等结构组成,无需离合器和变速器,因此机舱空间可以压缩到非常小;


• 双电机驱动结构主要由电动机、减速器、传动半轴等结构组成,通过驱动单元来驱动两侧车轮,可以提供较大扭矩,双电机驱动方案一般通过电子程序来控制两轮间的差速来控制转向。


分布电机驱动


• 轮边电机驱动系统通过电机加 减速器组合对驱动轮单独驱动, 且电机不集成在车轮内。电机与固定速比减速器一起安装在车架上,减速器输出轴通过万向节与车轮半轴相连驱动车轮。


• 轮毂电机驱动系统分内转子式与外转子式,外转子式采用低速外转子电机,无减速装置,车轮的转速与电机相同;内转子式则采用高速内转子电机, 在电机与车轮之间配备固定传 动比的减速器。


2 线控驱动系统结构


• 线控油门系统由油门踏板、踏板位移传感器、电控单元、数据总线、伺服电动机和节气门执行机构组成;


• 线控驱动系统由电子控制单元(ECU)、功率转换器、驱动电机、机械传动系统、驱动轮等组成。


线控油门系统结构


• 线控油门系统是通过ECU来调整节气门的,其油门踏板产生的位移数 据汇总到ECU,以前单纯的以踏板力度控制的节气门变成了由数据计算后给出的优化好的节气门开合度,从而提高的燃油经济性。


线控驱动系统结构



• 纯电动汽车的总体结构与传统汽车基本一致,只是在动力驱动、能源储存与供给等关键系统、关键部件上与传统汽车有着极大的区别。


• 针对新能源汽车的线控驱动系统结构主要分为集中式驱动、中央传动驱动及分布式驱动三种类型。目前,电驱 动桥技术、轮边减速驱动、轮毂电机直接驱动技术是主流结构。




3 线控驱动工作原理


• 线控油门是通过电缆或线束来控制节气门的开度,从表面看是用电缆取代了传统的油门拉线,但实质上不仅仅 是简单的改变连接方式,而是能对整个车辆的动力输出实现自动控制功能 。



• 当驾驶员需要加速时踩下油门,踏板位置传感器就将感知的信号通过电缆传递给 ECU,ECU根据此位置信号判断驾驶员的驾车意图,并参考发动机转速传感器、进 气压力传感器及其他相关传感器的电信号,得到最佳的节气门开度参数,然后与当 前节气门位置进行比较,当节气门的开度与最佳开度参数不一致时,便输出控制信 号,控制节气门驱动电机工作,将节气门调整到目标开度。



• 纯电动汽车的驱动控制通过嵌入到整车控制器中的控制策略程序来实现,根据各传感器输入信号判断车辆所处 的工况并决策各工况下驱动电机的目标转矩,然后通过CAN总线将目标值发送给电机控制器(MCU),电机 控制器根据接收到的命令对电机进行控制,以保证车辆的正常行驶。



• 针对整车控制器,控制策略的输入信号有加速踏板开度、制动踏板开度、实际挡位、车速、电机转速、电机转矩以及电池SOC信号等,这些信号 经过处理后经由CAN总线传入整车控制器,为驱动控制策略的判断和运 算提供依据。




• 整车控制器输出扭矩指令信号给到电机控制器MCU,电机控制器 MCU输出电机的实际扭矩;为确保扭矩安全,根据能量守恒原理, 利用电机控制器的有功输出平衡原理,实现电机实际扭矩输出的监 控。电机控制器MCU控制算法为转子磁链定向矢量控制方式。


4 线控驱动系统特点分析


• 线控油门系统相比传统机械油门系统,不但系统质量轻,还可以和油压、发动机温度和废气再循环等信息更密 切的结合,有助减少耗油量和废气排出;


• 线控驱动系统分为集中式驱动和分布式驱动两种,这两个系统各有优缺点。


•线控油门驱动优点:

(1)减少了机械组合 零件,系统质量更轻;

(2)可以和油压、 发动机温度和废气再循环等信息有更密切的电子信号结合,有助减少耗油量和废气 排出;

(3)节气门开度被简化成电子信息,有助于提高各项系统的沟通效率;

缺点:成本更高、有一定延迟效果、可靠 性不如机械式油门。


• 集中式驱动优点:

(1)结构紧凑,便于处 理电机冷却、振动隔振以及电磁干扰等问 题;

(2)整车总布置型式与内燃机接近, 前舱热管理、隔声处理以及碰撞安全性与原车接近或者容易处理。

缺点:通常要求使用高转速大功率电机, 对电机性能要求高,也具有传动链长,传动效率低的缺点。


• 分布式驱动

优点:

(1)整车布置的灵活性和车身造型设计的自由度增大,易于实现同底盘不同造型产品的多样化;

(2)机械传动系统部分减少或全部取消,可简化驱动系统;

(3)电机驱动力矩响应迅速,正反转灵活切 换,驱动力矩瞬时响应快,恶劣工况的适应 能力强;

(4)更容易实现电气制动、机电复 合制动及再生制动,经济性更高,续驶里程 更长;

(5)在行驶稳定性方面,通过电机力 矩的独立控制,更容易实现对横摆力矩、纵向力矩的控制,从而提高整车的操纵稳定性及行驶安全;

缺点

(1)分布电机驱动为满足各轮运动协调, 对多个电机的同步协调控制要求高;

(2)电机的分散安装布置提出了结构布置、热管理、电磁兼容以及振动控制等多方面的技术难题。



5 L3/L4/L5级别下线控驱动技术


• 随着电动车技术的不断成熟,对电气化零部件要求将日益提升,也正推进线控驱动技术由集中式驱动向分布式 驱动不断发展。目前线控驱动正处于集中式驱动分布的阶段,未来随着自动驾驶及电气化水平的提高,以轮边 和轮毂电机为代表的的分布式驱动技术方案将得到大量应用。



• 在L3/L4级别自动驾驶情况下,新能源汽车线控驱动架构将以中央传统驱动为主。中央传动驱动有四种布置方 式:(1)发动机+后桥电机;(2)发动机+双电机(带发电机);(3)发动机+双电机(不带发电机);(4)发动机+三电机。



• 另外,发动机+双电机/三电机作为电驱动桥技术的另外一种方案,同样通过传统驱动和电动驱动实现四驱运行, 具有前驱、后驱及四驱自动切换、良好的动力性能和弯道操控性能等优点,但技术要求较高且结构非常复杂。



• 双电机全轮驱动技术极大地简化整车结构布局,拥有更多的整车布置空间、更好的加速性能和操控体验。然而, 存在的最大的难题主要是对电控系统要求非常高。



• 在L5级别的自动驾驶下,以轮边电机和轮毂电机为代表的分布式驱动形式将成为主流;


• 轮边减速驱动技术高度集成电机、减速器机构及轮毂等部件,具有传动系统简洁、质量轻、传动效率高、爬坡 性能好及能量回收效率高等优点;但是也存在磨损较快、不易散热、噪音大及对电控系统要求高等劣势。



• 轮毂电机驱动最大特点是动力、传动、制动系统的高度集成,具有底盘结构大幅简化、应用车型范围广、传动 效率最高等特性。但是受制于技术成熟度的影响,目前存在车辆稳定性不足、复杂环境下使用面临散热、抗震 等诸多挑战。



免责声明:文中部分图片和内容来源希迈汽车底盘,由车咖妹编辑排版,如需转载请添加车咖君微信【GSAuto0001】申请授权转载,未经授权转载或者抄袭,车咖测评团队将保留法律追究的责任。车咖测评技术团队已开通车型定制解读和购车咨询服务项目,如有需求请添加车咖君微信【GSAuto0001】沟通。

大家都在看

【中国汽车线控技术专家委员会】底盘构造详解及新发展

【中国汽车线控技术专家委员会】线控转向--自动驾驶路径与方向的精确控制|50+篇线控文章

【中国汽车线控技术专家委员会】基于EHB 的坡道起步辅助策略开发

【中国汽车线控技术专家委员会】智能底盘:CDC半主动悬架

【中国汽车线控技术专家委员会】线控油门的构成及优劣势

【中国汽车线控技术专家委员会】汽车滑板底盘技术体系研究

【中国汽车线控技术专家委员会】汽车六大悬架位置示意图、结构图、优缺点对比

【中国汽车线控技术专家委员会】一文了解什么是ESC系统

【中国汽车线控技术专家委员会】线控制动系统关键技术解析

【中国汽车线控技术专家委员会】悬架系列——电磁悬架

【中国汽车线控技术专家委员会】车辆EPB系统结构及功能介绍

【中国汽车线控技术专家委员会】浮动式制动卡钳降低拖滞力矩的有效措施

【中国汽车线控技术专家委员会】什么样的转向系统才能满足自动驾驶的需求?

【中国汽车线控技术专家委员会】未来几年,国内线控制动销量将突破1000万套

【中国汽车线控技术专家委员会】浅析新能源汽车的“线控转向系统”

【中国汽车线控技术专家委员会】理想魔毯空气悬架2.0

【中国汽车线控技术专家委员会】常见几种主动悬架系统设置方法

【中国汽车线控技术专家委员会】|50+篇线控文章

【中国汽车线控技术专家委员会】常见几种主动悬架系统设置方法

【中国汽车线控技术专家委员会】常见几种主动悬架系统设置方法

【中国汽车线控技术专家委员会】智能底盘:CDC半主动悬架

【中国汽车线控技术专家委员会】2024汽车空气悬架行业研究报告:高附加值集成部件,国产替代新蓝海

【中国汽车线控技术专家委员会】EPS 电机行业篇,助推汽车转向系统加速发展

【中国汽车线控技术专家委员会】基于线控电子液压制动系统的车辆减速度控制

【中国汽车线控技术专家委员会】主动/半主动悬架应用与研究

【中国汽车线控技术专家委员会】电动汽车制动能量回收控制系统和策略研究

【中国汽车线控技术专家委员会】EPS 电机行业篇,助推汽车转向系统加速发展

【中国汽车线控技术专家委员会】汽车线控制动two-box方案

【中国汽车线控技术专家委员会】国产化持续加速,国内车企空气悬架渗透率逐渐提升

【中国汽车线控技术专家委员会】浅谈车身电子稳定系统ESP

【中国汽车线控技术专家委员会】线控制动有哪些类型?都有什么优缺点?

【中国汽车线控技术专家委员会】智能驾驶对One-box方案的安全要求

【中国汽车线控技术专家委员会】液压制动的终结-电子机械制动(EMB)技术分析

【中国汽车线控技术专家委员会】EPS电动助力转向简介及关键参数计算

【中国汽车线控技术专家委员会】智能IPB制动系统的结构与应用

【中国汽车线控技术专家委员会】基于专利视角的滑板底盘技术发展研究

【中国汽车线控技术专家委员会】汽车线控转向系统控制研究

【中国汽车线控技术专家委员会】EMB方案加速落地,本土企业有望迎量产先发优势

【中国汽车线控技术专家委员会】汽车滑板底盘技术体系研究

【中国汽车线控技术专家委员会】空气悬架的设计与开发经验分享

【中国汽车线控技术专家委员会】汽车后轮转向的发展及分类介绍

【中国汽车线控技术专家委员会】全面解析制动跑偏现象

【中国汽车线控技术专家委员会】EMB系统应用及关键技术分析

【中国汽车线控技术专家委员会】线控悬架系统分析

【中国汽车线控技术专家委员会】五万字读懂汽车线控制动系统

【中国汽车线控技术专家委员会】空气悬架和电磁悬架有何不同?

【中国汽车线控技术专家委员会】浅析轮毂电机(附国内外研究进展)

【中国汽车线控技术专家委员会】一文读懂滑板底盘

【中国汽车线控技术专家委员会】国内自主研发底盘技术最全盘点

【中国汽车线控技术专家委员会】底盘芯片解决方案

【中国汽车线控技术专家委员会】一文熟悉汽车底盘性能开发

【中国汽车线控技术专家委员会】悬架系列——液压悬架

【中国汽车线控技术专家委员会】智能网联汽车底盘线控技术介绍

【中国汽车线控技术专家委员会】线控转向--自动驾驶路径与方向的精确控制

【中国汽车线控技术专家委员会】EMB(电子机械制动)关键技术解析

【中国汽车线控技术专家委员会】线控制动-智驾底盘系统的明珠

【中国汽车线控技术专家委员会】奥迪悬架技术五大黑科技盘点(附视频)

【中国汽车线控技术专家委员会】浅析新能源汽车的线控转向系统

【中国汽车线控技术专家委员会】一文读懂汽车制动系统的前世今生

【中国汽车线控技术专家委员会】汽车后轮转向的发展及分类介绍

【中国汽车线控技术专家委员会】EMB夹紧力控制与传感器故障诊断研究进展

【中国汽车线控技术专家委员会】液压制动的或将终结-电子机械制动(EMB)技术分析

【中国汽车线控技术专家委员会】国外线控制动技术现状及趋势综述

【中国汽车线控技术专家委员会】校友企业推荐-炯熠电子(电子机械制动-EMB)

【中国汽车线控技术专家委员会】汽车后轮转向的“前世与今生”

【中国汽车线控技术专家委员会】Stellantis 获得后轮转向系统专利

【中国汽车线控技术专家委员会】京西集团与蒂森克虏伯转向携手开发EMB

【中国汽车线控技术专家委员会】智己汽车全球首发“智慧数字底盘”

【中国汽车线控技术专家委员会】特斯拉、小鹏、蔚来、理想新能源汽车底盘对比分析

【中国汽车线控技术专家委员会】一文带你了解何为汽车“底盘”、“平台”、“架构”

【中国汽车线控技术专家委员会】汽车产品平台化模块化开发模式与实施策略

【中国汽车线控技术专家委员会】CMA/BMA/SPA/SEA傻傻分不清? 一文读懂吉利的模块化造车架构

【中国汽车线控技术专家委员会】华为途灵智能底盘技术解析

【中国汽车线控技术专家委员会】汽车电子驻车制动系统-EPB

【中国汽车线控技术专家委员会】一文熟悉汽车底盘性能开发

【中国汽车线控技术专家委员会】汽车底盘——驻车制动系统

【中国汽车线控技术专家委员会】线控底盘技术解读

【中国汽车线控技术专家委员会】智能网联汽车底盘线控技术介绍

【中国汽车线控技术专家委员会】浅析汽车四轮定位

【中国汽车线控技术专家委员会】从Rivian看滑板底盘的发展进程:锋芒已露,可圈可点

【中国汽车线控技术专家委员会】汽车线控制动two-box方案

【中国汽车线控技术专家委员会】汽车后轮转向的工作原理介绍

【中国汽车线控技术专家委员会】汽车后轮转向的工作原理介绍

【中国汽车线控技术专家委员会】汽车线控制动技术

【中国汽车线控技术专家委员会】EMB线控制动

【中国汽车线控技术专家委员会】线控转向--自动驾驶路径与方向的精确控制

【中国汽车线控技术专家委员会】制动系统设计开发流程

【中国汽车线控技术专家委员会】一文带你了解何为汽车“底盘”、“平台”、“架构”

【中国汽车线控技术专家委员会】智能线控底盘全产业链解析

【中国汽车线控技术专家委员会】一文读懂智能汽车滑板底盘

【中国汽车线控技术专家委员会】底盘线控悬架智能化趋势

【中国汽车线控技术专家委员会】汽车转向系统开发思路

【中国汽车线控技术专家委员会】一文了解汽车线控制动技术

【中国汽车线控技术专家委员会】鼓刹还是盘刹?汽车制动器刹车原理及发展方向

【中国汽车线控技术专家委员会】新型高效的悬架架构设计方法

【中国汽车线控技术专家委员会】EPS电动助力转向简介及关键参数计算

【中国汽车线控技术专家委员会】EMB夹紧力控制与传感器故障诊断研究进展

【中国汽车线控技术专家委员会】汽车底盘线控技术介绍!(全面)

【中国汽车线控技术专家委员会】自适应悬架-减振器技术路线介绍

【中国汽车线控技术专家委员会】智能底盘——迈向高阶智驾的基石

【中国汽车线控技术专家委员会】汽车线控转向系统控制研究

【中国汽车线控技术专家委员会】汽车制动系统之——盘式制动器

【中国汽车线控技术专家委员会】线控底盘技术之线控转向技术

【中国汽车线控技术专家委员会】新能源汽车制动系统解析

【中国汽车线控技术专家委员会】汽车前后悬架系统的模块化应用

【中国汽车线控技术专家委员会】基于自动驾驶的线控底盘技术现状和发展趋势

【中国汽车线控技术专家委员会】蔚来4D智能底盘技术解析

【中国汽车线控技术专家委员会】馈能式半主动悬架振动自适应最优容错控制

【中国汽车线控技术专家委员会】浅析智能汽车底盘域

【中国汽车线控技术专家委员会】自动驾驶线控转向系统梳理

【中国汽车线控技术专家委员会】液压制动的或将终结-电子机械制动(EMB)技术分析

【中国汽车线控技术专家委员会】线控大脑与线控底盘集成分析

【中国汽车线控技术专家委员会】一文解析自动驾驶的线控底盘技术

【中国汽车线控技术专家委员会】线控制动系统关键技术解析

【中国汽车线控技术专家委员会】浅析空气悬架的设计

【中国汽车线控技术专家委员会】深度解读悬架选型及前后布置技术

【中国汽车线控技术专家委员会】新能源汽车线控转向技术介绍

【中国汽车线控技术专家委员会】蔚来行政旗舰轿ET9的智能线控底盘技术

【中国汽车线控技术专家委员会】线控制动技术路线图

【中国汽车线控技术专家委员会】解析宝马摩托车后轮转向系统专利技术

【中国汽车线控技术专家委员会】汽车后轮转向的工作原理介绍及量产情况
【中国汽车线控技术专家委员会】转向节工艺的秘诀:集中起来,别分散

【智能座舱】2023年汽车智能化系列报告之智能驾驶域控制器篇|46页PDF可下载

【中国汽车线控技术专家委员会】史上最全EPS分类介绍

【中国汽车线控技术专家委员会】线控转向汽车路感控制策略

【智能驾驶】2023特斯拉FSD自动驾驶方案深度解析-德邦证券|53页PDF限时下载

【中国汽车线控技术专家委员会】线控底盘技术解读

【中国汽车线控技术专家委员会】特斯拉、小鹏、蔚来、理想新能源汽车底盘对比分析

【中国汽车线控技术专家委员会】汽车底盘系统开发流程讲解

【中国汽车线控技术专家委员会】底盘域控制器解决方案及产品开发探讨

——关注“智能车产业库”,分享更多精彩干货文章!


免费投稿请发送邮件到:gearshare@163.com

(欢迎行业内人士踊跃投稿,将你们的文章分享给大家)

加入中国电动汽车智能核心技术知识星球,获取汽车行业海量干货

我知道你在看

智享新汽车 汽车新四化专业资讯及干货分享平台
评论
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 111浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 56浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 155浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 102浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 87浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 48浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 55浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 214浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦