c语言音频.wav读写示例

原创 FPGA开源工作室 2024-09-05 09:46


1 .wav格式说明

一. RIFF 概念

在 Windows 环境下,大部分的多媒体文件都依循着一种结构来存放信息,这种结构称为"资源互换文件格式"(Resources lnterchange File Format),简称 RIFF。例如声音的 WAV 文件、视频的 AV1 文件等等均是由此结构衍生出来的。RIFF 可以看做是一种树状结构,其基本构成单位为 chunk,犹如树状结构中的节点,每个 chunk 由"辨别码"、“数据大小"及"数据"所组
成。

辨别码由 4 个 ASCII 码所构成,数据大小则标示出紧跟其后数据的长度(单位为 Byte),而数据大小本身也用掉 4 个 Byte,所以事实上一个 chunk 的长度为数据大小加 8。一般而言,chunk 本身并不允许内部再包含 chunk,但有两种例外,分别为以"RIFF"及"L1ST"为辨别码的chunk。而针对此两种 chunk,RIFF 又从原先的"数据"中切出 4 个 Byte。此 4 个 Byte 称为"格式辨别码”,然而 RIFF 又规定文件中仅能有一个以"RIFF"为辨别码的 chunk。

只要依循此一结构的文件,我们均称之为 RIFF 档。此种结构提供了一种系统化的分类。如果和 MS 一 DOS 文件系统作比较,"RIFF"chunk 就好比是一台硬盘的根目录,其格式辨别码便是此硬盘的逻辑代码(C:或 D:),而"L1ST"chunk 即为其下的子目录,其他的 chunk 则为一般的文件。至于在 RIFF 文件的处理方面,微软提供了相关的函数。视窗下的各种多媒体文件格式就如同在磁盘机下规定仅能放怎样的目录,而在该目录下仅能放何种数据。

二. WAV 文件格式

WAVE 文件是非常简单的一种 RIFF 文件,它的格式类型为"WAVE"。RIFF 块包含两个子块,这两个子块的 ID 分别是"fmt"和"data",其中"fmt"子块由结构 PCMWAVEFORMAT 所组成,其子块的大小就是 sizeofof(PCMWAVEFORMAT),数据组成就是 PCMWAVEFORMAT 结构中的数据。

PCMWAVEFORMAT 结构定义如下:

typedef struct
{
WAVEFORMAT wf; /波形格式;
WORD wBitsPerSample; //WAVE 文件的采样大小;
} PCMWAVEFORMAT;
//WAVEFORMAT 结构定义如下:
typedef struct
{
WORD wFormatag; //编码格式,包括 WAVE_FORMAT_PCM,WAVEFORMAT_ADPCM 等
WORD nChannls; //声道数,单声道为 1,双声道为 2;
DWORD nSamplesPerSec; //采样频率;
DWORD nAvgBytesperSec; //每秒的数据量;
WORD nBlockAlign; //块对齐;
} WAVEFORMAT;

"data"子块包含 WAVE 文件的数字化波形声音数据,其存放格式依赖于"fmt"子块中wFormatTag 成员指定的格式种类,在多声道 WAVE 文件中,样本是交替出现的。如 16bit 的单声道 WAVE 文件和双声道 WAVE 文件的数据采样格式分别如图四所示:

2 c语言读写.wav文件示例

下面是一个简单的C语言示例,用于读取和写入WAV音频文件。这段代码展示了如何打开WAV文件、读取其头部信息、读取音频数据以及写回一个新的WAV文件。

读取和写入WAV文件示例

#include 
#include
#include

#pragma pack(1)
typedef struct {
char riff[4]; // "RIFF"
unsigned int size; // Size of the file
char wave[4]; // "WAVE"
char fmt[4]; // "fmt "
unsigned int fmt_size;// Size of format
unsigned short audio_format; // Audio format
unsigned short num_channels; // Number of channels
unsigned int sample_rate; // Sample rate
unsigned int byte_rate; // Byte rate
unsigned short block_align; // Block align
unsigned short bits_per_sample; // Bits per sample
char data[4]; // "data"
unsigned int data_size; // Size of data
} WAVHeader;

void read_wav(const char *filename) {
FILE *file = fopen(filename, "rb");
if (!file) {
perror("Unable to open file");
return;
}

WAVHeader header;
fread(&header, sizeof(WAVHeader), 1, file);

printf("RIFF: %.4s\n", header.riff);
printf("WAVE: %.4s\n", header.wave);
printf("Format: %.4s\n", header.fmt);
printf("Channels: %hu\n", header.num_channels);
printf("Sample Rate: %u\n", header.sample_rate);
printf("Bits per Sample: %hu\n", header.bits_per_sample);
printf("Data Size: %u\n", header.data_size);

// Read audio data
short *data = malloc(header.data_size);
fread(data, header.data_size, 1, file);
fclose(file);

// Example: Print first 10 samples
for (int i = 0; i < 10 && i < header.data_size / 2; i++) {
printf("Sample %d: %d\n", i, data[i]);
}

free(data);
}

void write_wav(const char *filename, short *data, unsigned int data_size, int sample_rate, int num_channels) {
FILE *file = fopen(filename, "wb");
if (!file) {
perror("Unable to open file");
return;
}

WAVHeader header;
strncpy(header.riff, "RIFF", 4);
header.size = 36 + data_size;
strncpy(header.wave, "WAVE", 4);
strncpy(header.fmt, "fmt ", 4);
header.fmt_size = 16;
header.audio_format = 1; // PCM
header.num_channels = num_channels;
header.sample_rate = sample_rate;
header.byte_rate = sample_rate * num_channels * (16 / 8);
header.block_align = num_channels * (16 / 8);
header.bits_per_sample = 16;
strncpy(header.data, "data", 4);
header.data_size = data_size;

fwrite(&header, sizeof(WAVHeader), 1, file);
fwrite(data, data_size, 1, file);
fclose(file);
}

int main() {
const char *input_filename = "input.wav";
const char *output_filename = "output.wav";

read_wav(input_filename);

// Here you would modify `data` as needed
short sample_data[10] = {0}; // Example data
write_wav(output_filename, (short *)sample_data, sizeof(sample_data), 44100, 1);

return 0;
}

说明
WAV 文件头结构 (WAVHeader):定义了WAV文件的结构,包括文件格式、采样率、声道等信息。
读取 WAV 文件:read_wav 函数打开一个WAV文件,读取其头部信息和音频数据,并打印一些基本信息和前10个音频样本。
写入 WAV 文件:write_wav 函数根据提供的音频数据生成一个新的WAV文件。
主函数:在main函数中,读取input.wav文件并输出到output.wav文件。

使用注意
确保使用的WAV文件符合标准(如PCM编码)。
在实际应用中,可能需要对音频数据进行处理或操作。
编译命令
使用GCC编译:

gcc -o wav_example wav_example.c


FPGA开源工作室 知识,创新,创艺,FPGA,matlab,opencv,数字图像,数字信号,数字世界。传递有用的知识,传递创艺的作品。FPGA开源工作室欢迎大家的关注。
评论 (0)
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 207浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 154浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 238浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 263浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 144浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 123浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 213浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 148浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 180浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 125浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 124浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦