技术分享 | 使用热阻矩阵进行LDO热分析的指南

原创 纳芯微电子 2024-09-03 09:49

低压降线性稳压器(LDO)因其工作原理,虽然能以低成本提供高电源质量,但也会不可避免地产生损耗和发热问题。面对大压降、大电流,LDO将长时间处于较高的工作温度范围,可能影响其使用寿命和可靠性。因此,通过事先分析和评估LDO在特定工作环境下的温度,并采取一定的措施,可以有效地避免芯片在长时间的高温下发生热关断和老化。

芯片的结温主要取决于其功耗、散热条件和环境温度。因此,通过选择不同的封装版本来降低芯片的结与环境的热阻,是一种降低结温的有效解决方案。


目录

1. 芯片热阻介绍

2. 使用热阻矩阵进行热分析

2.1. 对θJA的误解

2.2. 理解ΨJC & θJC

3. 在EVM板上进行LDO结温和热阻测试


1. 芯片热阻介绍

由于芯片结构复杂,通常通过仿真得到热阻的理论计算值。而在芯片实际工程应用中,工程师们将理论热阻与实际应用问题相结合,加以归类,得出一些具有明显物理意义的热阻。下图展示了芯片焊接在PCB上时的热阻网络。

a972b32f41257749d9baccc61be9427.jpg

图1 芯片热阻网络


图中,热量从结向上通过封装体传递到封装外壳的顶部,它们之间的热阻之和被称为θJC(top);热量从结向下,通过粘合剂、引线框架基岛传递到底部散热焊盘,其热阻之和被称为θJB;此外,通过图中所有材料和结构,从结到外部环境的所有方向的热量,所有路径的整体热阻被称为θJA

虽然这些热阻可以通过建模仿真获得,但由于存在制造误差及其他原因,可能不甚准确。因此,在工程实践中,通常通过芯片发热和温差,来计算热阻。热阻的定义如下:

1706519649(1).jpg(1-1)

这意味着不论是减少芯片的发热、改用散热性能更好的大型封装、增加散热器和风扇,还是改进PCB的散热设计,都可以减少芯片温升。


2. 使用热阻矩阵进行热分析
2.1. 对θJA的误解

我们可以在芯片的数据手册(datasheet)中找到一个热阻信息矩阵,其中就包含了上述θJA和θJC(top)等参数。下表摘自NSR31系列LDO的数据手册。NSR31完整版数据手册官网链接:https://www.novosns.com/10v-low-consumption-ldo-685

微信图片_20240402161245.png

表1 NSR31系列的热阻信息


需要注意的是,许多工程师会使用θJA、环境温度和芯片功耗,来计算结温,但这可能会产生较大的计算误差。
从上节图1的θJA定义可以看出,其值不仅由芯片本身决定,还很大程度上取决于具体使用的PCB。不同的应用PCB的散热面积、层数、铜厚、板厚、材料、器件布局等方面各不相同,因此,θJA的值在不同的应用PCB上会有很大差异。大多数工程师都很关注自己PCB上芯片的状态。因此,在热设计中不建议使用θJA,θJA的主要优势在于比较不同封装类型的热性能方面。

通常而言,几乎所有芯片数据手册中的θJA,都是使用行业标准板测量或仿真而得的示例值。这些行业标准平台被称为JEDEC High-K或JEDEC Low-K板。此外,这些JEDEC 板仅由安装在3"x3"板上的一个IC器件组成,与实际工程应用中的PCB有显著差异。


2.2. 理解ΨJC & θJC

为了解决应用端的实际问题,表中还提供了热特性参数Ψ。这是联合电子器件工程委员会(JEDEC)在20世纪90年代定义的热指标。就评估现代封装器件结温而言,它是一个更为便利的指标。Ψ代表的是结与参考点之间的温差与芯片消耗的总功率的比值,它只是一个构造出的参数。虽然其公式和单位(°C/W)与Rθ非常相似,但Ψ实际上并不是一个“热阻”参数,其定义如下:

1706520674.jpg(2-1)

其中,ΨJC是结到壳的热特性参数,TJC是结到壳的温差,PD 是芯片的总耗散功率。因此,求TJ时,首先要测量外壳温度TC,计算芯片的总耗散功率PD,再使用以下公式计算:

1706521163(1).jpg(2-2)

其中,ΨJC可以通过数据手册中的热阻信息矩阵获取。当芯片外部散热条件固定时,ΨJC与θJC成正比。与不同应用端差异很大的θJA相比,虽然ΨJC也受到PCB散热能力的影响,但我们可以近似地认为,在大多数应用中,该影响并不显著。具体原因如下。

公式(2-2)可以进一步写为:

1706521257(1).jpg(2-3)


式中:PC是从结向上通过封装体传递到封装外壳顶部的热功率。由此可得:

1706521429(1).jpg(2-4)

即ΨJC与θJA成正比,其值为从结到壳顶部的热功率与芯片总耗散功率的比值。

1706521496(1).jpg

图2 芯片热阻网络简图

如图2所示,根据热阻网络的“并联电阻分流公式”关系,功率比相当于热阻比的倒数:

1706521617(1).jpg(2-5)

式中:θCA为壳到环境的热阻。当没有在芯片表面安装散热器时,θCA远大于θJC。由此可得,ΨJC小于θJA,因此,在工程上的实际PCB中,使用ΨJC估算结温的误差,远小于使用θJA来估算的误差。


3. 在EVM板上进行LDO结温和热阻测试
由于集成电路外部被塑封料(mold compound)包裹,结没有暴露在外,因此我们无法通过热电偶或红外温度计,直接测量芯片内部结点的温度。对于许多大型封装集成电路,例如CPU或GPU,通常会集成一个热传感器,用于测量TJ。但对于小型封装集成电路,由于受到尺寸和成本的限制,大都没有这种TJ传感器的功能。因此,我们必须通过测试和热分析来估算TJ
NSR31/33/35系列LDO有8种封装,具体信息如表2所示。采用不同封装的各类热阻已在芯片数据手册的热阻矩阵中标明。其信息概述如下。

微信图片_20240402161257.png

表2 NSR3x 系列的热阻信息


(1) 热数据基于:JEDEC标准高K型材、JESD 51-7、四层板。

表2中所有参数均根据JEDEC标准获得。通过表θJA比较可知,SOT-23-5L封装的散热性能最差,TO263-5封装的散热性能最好。当需要获取LDO在特定应用电路板上的结温时,可以使用公式(2-2):

式中:1706521866(1).jpg(3-1)

式中:VIN代表LDO输入电压,VOUT代表LDO输出电压,IOUT代表LDO输出电流。

接下来以NSR31050-QSTAR为例,在EVM板上测量和计算其结温和实际热阻θ'JA,以供参考。具体来说,EVM板采用四层设计(88mm x 53mm),铜厚为1盎司,总散热面积约为4600平方毫米,如图3所示。

1706521969(1).jpg

图3 NSR31050-QSTAR EVM板


在室温通风恒定的情况下,通过给LDO施加一定的电压和负载,可以将其功耗从0W增加到接近热关断。在不同功耗设置下,让芯片工作5分钟温度稳定后,使用手持式红外测温仪测量芯片顶壳的温度。利用环境温度、壳温、功耗和ΨJC的公式,来对EVM板上芯片的结温和热阻 θ'JA进行估算。结果如表3所示。

微信图片_20240402161252.png

表3 NSR3x系列的热信息


1706522222(1).jpg

图4 部分壳温的红外测量结果


从表3可以看出,在此EVM板上,测得的结到环境的热阻θ'JA约为 77.5°C/W,远低于JEDEC 标准的207.9°C/W。

综上所述,在实际应用中,芯片存在多种热传导途径,热量亦通过多个通道传递。我们很难像估算总功耗一样,准确得到由特定途径传导的功耗。因此,热特性参数ΨJC更适合用于估算结温,利用热特性参数ΨJC,同时结合公式(3-1)来估算结温更为准确和严谨。

纳芯微电子 纳芯微电子(科创板股票代码688052)聚焦传感器、信号链、电源管理三大方向。
评论
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 86浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦