AUTOSAR时间同步之gPTP详解+应用

原创 汽车电子与软件 2024-09-02 08:20

本文约5,600字,建议收藏阅读


作者 | 汽车与基础软件

出品 | 汽车电子与软件




#01

为什么要gPTP

需求先行,可能你现在做的控制器还用不到时间同步,所以很难去理解,所以这里说以下为什么要用时间同步,当了解了为什么要用时间同步,那么就能自己产生时间同步应该是什么有的,应该要去解决什么样的问题了。


域控制器,中央控制器是未来汽车电子电气架构的发展趋势,域控制器上可能会包含MCU、SOC还有各种外设,比如摄像头、各种雷达等,需要自动驾驶系统各部分有一个统一的时间基准,以保证系统处理的是同一时刻的信号,这就需要时间同步来实现。


TSN


时间敏感系统,统一的信号源,不同的输出,输出应该需要在同一时刻进行输出。先看见闪电,在听见打雷,这给人的感觉就是不同步。看电视一样,声音和视频要一致,才有比较好的体验感。



AVB


不同输入,输入到同一个ECU进行处理,这就需要相同的时间刻度。不然的话, 比如相机是前一时刻的信息,雷达是这一时刻的信息,那么处理器就很难办了。



那么对于我们汽车上面的时间同步方案。从上面的介绍可以看出来,依赖于两个东西,一个是通信 一个是 协议。在车上 ECU与ECU 交互的最多的就是CAN 和ETH。对于协议 在autosar的规范里面说到了gPTP 协议。本文将主要讲gPTP.


既然是车上用的了,那么就有可能存在外部购买的设备和车上的设备不完全兼容的现象,因为外部的商用产品可能是支持其他的协议没有完全支持gPTP。所以我们下面对PTP 与 gPTP 进行了一些比较。



#02

时间同步协议


PTP 和 gPTP 区别



feature

PTP V1

PTP V2

802.1 as-2011

802.1as-2020

注释

驻留时间

对于TC 时钟,驻留时间 会写在报文里面

同左

同左

因为TC时钟没有master 和 slave port的概念,只有转发的概念,那么这个转发就意味着自己体内有报文过去了,这个时间必须要考虑到。也就是所谓的驻留时间。所以需要在follow up 报文的correction 里面添加这个信息。否则 时间在这个节点消耗了,对于下个节点来说 需要知道的。

硬件时间戳

one step

one and two

two step

one and two

硬件时间戳指的是报文里面包含报文出去时刻的时间信息。这个时间信息需要很准。且为真实的。所以在发出来的时候 打时间戳,这本身对硬件 算法就是一个考验。

延迟计算

路径延迟

peer delay or 路径延迟

peer delay

同左

路径 和 peerdelay 啥意思呢?这后面可能要说到E2E 和 peer delay。从左边也能看出来,gPTP 只支持peer delay 也就是说不支持E2E. 那么E2E 是啥?一个链路中 不止连个节点的时候,中间的switch 可以 是当作对等节点 还是 当作 一个简单的路。这样的计算方式是不一样的。peer delay 计算的是 两个相邻节点之间的路径延迟。E2E 计算的是 master 和 slave 之间的 路径延迟。

时间敏感,不敏感

同左

时间敏感

同左

因为gPTP 只走L2 层协议,也就是说 这个 switch 需要识别到 时间同步的相关报文,不能当作普通的报文转发了。里面会有sequence, clockid 来区分 报文是给哪个节点的。所以switch需要直到。而且peer delay 是对等的,这里需要switch 来 作为一个对等节点 发送,恢复peer delay 报文。

协议支持

L2,L4 广播

L2,L4 广播 单播都可以

L2

L2

无需多言



#03

车载的各种设备是如何部署的



先罗列以下现在的L2, L2+, L3-, 以至于以后可能有的L4 都是应该有哪些智能器件。


算例超强的SOC 芯片


安全可靠的MCU 芯片


传感器
  • 激光雷达
  • 毫米波雷达
  • 超声波雷达
  • 惯性导航
  • 云端
  • 摄像头
  • 等等


通信
  • ETH
  • CAN
  • SPI
  • CSI
  • 等等


网络
  • switch
  • 多个switch


这些设备之间需要进行一定的连接。那么在连接就会产生不同的连接方式。对应的gPTP 的每个节点角色可能就是不一样的。


所以gPTP 里面大概有什么样的角色呢?


gPTP 各个时钟角色


  • GMC 主时钟


主时钟是整个gPTP域的时间基准,负责发送校时用的时间信息,是整个系统的时间源。


主时钟的时钟源一般具有高精度,能够与世界时(如GPS)保持同步。


主时钟发送的Sync和Follow_Up报文,用于实现主从端口的时间同步。


  • OC 普通时钟


OC是gPTP域中的一般设备,它们不具备GMC那样的时间基准功能,但能够接收GMC或其他OC的同步信息,并调整自己的本地时钟以保持同步。


接收GMC或BC发送的Sync和Follow_Up报文,并根据这些信息调整自己的本地时钟。


如有需要,可以发送Delay_Req报文以测量网络延迟。


  • TC(Transparent Clock,透明时钟)


TC是一种特殊的时钟设备,它不对gPTP报文进行时间戳的添加或修改,而是简单地将gPTP报文转发到下一个节点,并计算报文在其内部的驻留时间(residence time),然后将这个驻留时间添加到PTP报文的校正域中。



提高大规模网络中的时间同步精度,减少网络延迟对同步的影响。


支持两种类型的透明时钟:E2E(End-to-End,端到端)透明时钟和P2P(Peer-to-Peer,点对点)透明时钟。但是上面提到过,在gPTP 里面是只有P2P 这种方式的。不过不耽误介绍TC 本身。因为TC 不仅仅在gPTP中使用。


  • BC(Boundary Clock,边界时钟)


BC是一种同时具有多个端口且每个端口都可以作为从端口(接收同步信息)或主端口(发送同步信息)的时钟设备。它可以在多个gPTP域之间起到桥梁作用。


接收来自一个gPTP域的同步信息,并将其转发到另一个gPTP域。


在转发过程中,BC可以对同步信息进行必要的调整,以确保接收域的从时钟能够正确同步。


有了这些对角色的认知之后呢,我们在实际的应用场景中,就要根据实际不同的布置,来进行我们的授时配置。


这里面不同的报文走向也是不一样的。


网络基础知识


switch


在复杂的整车网络中,switch 尤为重要。这里给基础薄弱的同学们说一下switch是个啥子。


switch 走的内容协议是L2层协议,所以每个Port(看得见摸的着的硬件口)是都有自己的MAC 地址的。因为i在这里就没有IP等上面的一些数据的概念。和网口的布置如下(网络找的图)


 

不过他这个图没有说明 具体的连接方式。不重要了,能表示出switch所属的位置即可。


•MAC直连MAC,中间的接口总线一般为SMII/GMII/RMII/SMII,除SMII外都是并行的


•PHY直连PHY,是物理层接口,或为RJ45或为光纤接口等,是串行的,编码方式不同。

因为后面用得到一些switch相关的知识点,所以这里我(致敬了一篇)网上看的文章来介绍以下switch的过程。

模型


PC1 想通过switch 给 PC2 发送报文



因为Swtich 是二层协议,所以这里写的192.168 这俩IP 对于Switch 是没什么用的。那么Switch 需要直到什么呢?


他需要直到PC1 的mac 和 收到PC1的MAC需要往哪发。所以他需要直到PC1 和 PC2 mac的关系, 与 两个MAC。


所以switch中应该有个地址表。


MAC地址表


MAC地址表是交换机内部维护的一张表,用于记录网络中各个设备的MAC地址与交换机端口的对应关系。


MAC地址表通常包含动态MAC地址、静态MAC地址和黑洞MAC地址等类型。动态MAC地址由交换机通过学习数据帧中的源MAC地址自动获得,静态MAC地址则由网络管理员手动配置。


1.数据转发


–当交换机收到一个数据帧时,它会检查数据帧中的目的MAC地址,并在MAC地址表中查找该地址对应的端口。


–如果找到匹配的条目,交换机将数据帧直接转发到对应的端口,实现数据的快速、准确传输。


–如果未找到匹配的条目,交换机可能会采取广播方式将数据帧发送到所有端口(除了接收端口),以寻找目的设备。


2.提高网络效率


–通过维护MAC地址表,交换机能够避免不必要的广播,减少网络拥塞和碰撞,从而提高网络的整体效率。


3.网络安全


–静态MAC地址的配置可以帮助网络管理员控制哪些设备可以接入网络,增强网络的安全性。


–某些情况下,网络管理员还可以将特定MAC地址设置为黑洞MAC地址,以阻止来自该地址的数据帧在网络中传播。


4.网络监控与管理


–通过查看MAC地址表,网络管理员可以了解哪些设备已经连接到网络,以及它们连接到哪个端口。


–这有助于管理员进行网络监控、故障排查和性能优化等工作。



VLAN


vlan 可以理解为分组。


我们将PC1和PC3划分为VLAN10,PC2和PC4划分为VLAN20,那么相同的VLAN之间可以通信,不同VLAN之间二层不可以通信。


 
除了这种方法外,还可以使用基于 MAC 地址划分 VLAN 基于 IP 地址划分 VLAN 基于协议划分 VLAN 基于策略划分 VLAN 等方法来划分 VLAN。


回归正文。有了对switch的初步认识,我们知道了MAC转发有根据vlan的“限制”, 因为是mac 所以有组播mac, 广播mac, 单播mac.


报文在MAC


广播,单播,组播


MAC 的格式



单播 MAC 地址是指第一个字节的最低位是 0 的 MAC 地址。


 

组播 MAC 地址是指第一个字节的最低位是 1 的 MAC 地址。



广播 MAC 地址是指每个比特都是 1 的 MAC 地址。广播 MAC 地址是组播 MAC 地址的一个特例。



到这里我们对传输,节点,连接,部署都有了初步的基础知识了解。我们进一步说一下实际的场景。


应用场景


由上面可以直到,我们的应用场景和配置是自由的,所以下面举了两种例子


TC 场景


前面已经介绍了GMC, TC, OC 的一些意思,不清楚的可以回去看一下。这里的TC 可以认为是 车上的switch. 下面的好多个OC 就是不同的ECU。那么问题来了,这样的结构是如何去授时的呢。或者说是gPTP 允许不允许这样的操作呢。如果允许需要给TC 设置成什么样,可以回头读一下前面,有答案。



有了这样的系统部署,我们分析以下应该的报文流向。无用至于 GMC 发出sync, followup 报文。最终到达OC。


前面有提到E2E 和 peer delay 的两种方式,gPTP 只支持peer delay 但是这里我们都说一下。


peerdelay


下面描绘的是GC 与 OC 之间走的是TC, 并且用的是PeerDelay. 可以看出来sync 和 followup 的报文时 串联下来的。但是中间多了个RT。这个RT 我们暂时先不着急说,后面会仔细说一下协议本身。


还有一组报文就是pDelay Req 与 Res。这个好像是两组了。没错,因为这里用的是peer delay 对等的实体的delay延迟计算。换句话就是相邻的两个节点。所以说各扫门前雪,大家都扫干净了, 整体就不会差。不过这也就有个问题,假设TC 和 GMC 之间的 delay 没有计算对,这也会影响到OC 最终的时间计算。因为i这个计算出来的delay 会被当作correction 放在follow up 的报文里面传送到最后的OC 里面。大家还是管好自己吧,不要影响其他人。所以说,在tire1 的ECU 多数是OC, 这里 通过peer delay 的报文是不应该能发现GMC 的mac地址的。


注意这里的报文都是通过二层协议出来的



E2E


E2E 和上图就有很大的区别就是pdelay 的报文 从OC 直达了GMC,确实牛逼果然强,不过如果节点很多的话,这样其实是很难保证的一个操作。在gPTP 里面是没有这样的操作的。因为在MAC转发的时候是根据MAC转发的。协议本身是2层协议。不支持L4层协议。这里只作为与前面的对比介绍,所以在你们实际的项目当中,如果最终的OC 发现了GMC 的mac 在peer delay 中出现了,一点要小心。



VLAN


在使用VLAN 的时候,TC 节点是不应该可以跨VLAN 传输时间同步报文的。可以理解为一个二层协议的报文,本来就需要根据实际的VALN tag 进行转发报文。所以这样对于整车的节点也是一种很好的表现,不要让时间的port 和 数据的port 相互干扰。这样可能会出现一些不可预知的问题。



BC 场景


前面介绍了这么多TC 的内容,这里BC 可能就很容易理解了,BC 与TC 的区别在于BC 有自己的master port 与 slave port。所以说 BC 之后的节点 可以说 和 前面的GMC 就没有什么关系了。BC 的slave 接受时间, master 进行授时。就和我们autosar中间件似的。接收数据,ASW调用com接口,鬼知道这个接口是 什么协议来的。(可能例子不恰当,不过是这个意思)。BC 就不会有所谓的E2E 的概念了,毕竟 我们俩 就是 M 与 S。对于同步报文也比较简单。因为就是port 对 port的概念。


 

授时


可以看出 这里就没有 BC 与 OC 了,因为在这一层级的系统里面,只有M 与 S 的关系,所以一切都变得清晰明了。不过具体下面的T1,T2,T3,T4,T,,,,, 后面慢慢说到。不着急。先明白了机制,再去了解算法,再去实际分析报文



VLAN


vlan还是有的,不过与前面的GMC 就没有关系了,因为正如前面所说后面的授时和GMC 没有关系了,后面的VLAN 和 前面的VLAN 都不是一个东西,完全可以把VLAN tag 去掉都行。一切都有BC 管控。因为BC 有自己的M。屌的一批。这里也是和TC 的主要区别之一。


 

总结


GMC, BC, TC, OC 在一个系统中的表现如下。具体的报文走向,配置,mac的分发,vlan的设计可以依赖于前面的章节进行分析设计。这里不赘述。


 
下图价值100大洋。仔细捋清楚,整篇不用看了。为什么放在这里才放出这张图,因为看到这里的同志们,才有可能不止仅仅收藏,而是真的想学习一下,了解一下。




#04
同步原理



前面的章节我们已经见其形,识其体。这里我们来对内部的时间戳,以及前面提到的驻留延迟,路径延迟给计算一遍。


一共有哪些时间是需要计算的呢?在同步的过程可以把每一步拆解开。如下图。


 
我们逐个进行计算分析


路径延迟计算


计算路径延迟,需要对端的节点也支持gPTP。具体的测量过程如下拆解


 
•Request 端主动发送请求报文。并且记录自身的这个时间戳,这里我们记作T1经过一段时间之后,bridge 收到这个请求报文

•Bridge 收到请求报文,并且进行回复。记录收到的时刻为T2. 并且通过response 报文把T2 信息发回来。发回来的同时记录自己这时刻的时间戳T3.

请求端收到response报文 记录自己的收到时刻T4.

•Bridge 继续跟一帧follow up 报文来说明自己的T3 时刻。

有了这些时间。我们可以算出来发送与接收报文的总时间。这里简单的进行 /2 来当作 单向的延迟。公式如下:

 

注意这里多了一个参数 r, 这个 r是什么呢?前面我们想当然的认为左右两个节点的时钟频率是一样的。实际上他们可能是不一样的。也意思就是左边说自己过了100个tick, 右边也说自己过了100个tick,但是实际上的时间可能是不一样的。所以我们有必要让他们的tick 表示的实际时间长度 做到统一坐标轴。


 

但是如何去计算这个具体的数值呢?想一想我们需要请求和响应端对同一个报文进行计算。当然这里我们需要假定传输本身的延迟 不会波动太大,如果这个传输本身的波动太大可能会影响结果。所以我们也可以增加帧间隔来计算,这样能有效的降低传输本身的波动对r计算的影响。


这里我们采用sync 报文,假设10个sync报文计算一次。



这里我们就通过这个时间信息来算一下r



这里计算出来了r.


透明时钟下的时间信息


上面已经算出来了路径延迟。当然延迟还有驻留延迟。这个时间就不是协议通过外部的报文能算的出来的时间了,需要节点自己在内部进行计算。


那么我们在透明时钟下,sync 和 follow up 是如何被使用到的呢?



首先解释一下上图,上图是由master 节点发出sync 与 follow up 报文,随后经过一个bridge 节点,最后传给了slave 节点。


注意这里的sync 是原来的那个sync. 但是follow up 已经不是那个followup 了。可以仔细看一下,第一段是correctionfield 1. 第二段变成了2.


也就是说在bridge 里面会修改followup 报文内部的correction field 信息。


这个correction field 内容是什么呢。


• 驻留时间


switch 中,ingress 到 engress 的时间长。就是switch 处理这个 报文从接收到发送的时候 这个时间长度。这个完全去觉得switch 内部的逻辑以及性能。这个时间是有比较计算进去的。


• 路径延迟


–在上一章节已经详细的进行了计算


• 传输时长


以太网报文我们都知道 一个MTU 其实是很长的,而且 传输过程中是有带宽的。所以比如1400个byte的数据, 是一个一个信息出去的。如果是100M 的 和 1000M 的相比,传输所需要的时间肯定是不相同的。这里为了很精细化,也计算进来。


有了这三个参数,我们就可以计算整体的一个correction 了。如下

 


/ END /


招募 | 特约撰稿人(兼职)




汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 147浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 53浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 116浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 84浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 58浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 62浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 152浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦