就在刚刚!锂电领域又出新成果了!新技术加持解决历史性难题!

硬件之路学习笔记 2024-08-29 08:50

前沿背景





锂离子电池,作为现代科技领域的核心能源存储设备,其性能提升与技术创新一直是科研人员关注的焦点。随着新能源汽车的普及和高能量密度电子设备的广泛应用,对锂离子电池的能量密度、循环寿命、安全性和充电速度等性能提出了更高要求。在这一背景下,机器学习技术的引入为锂离子电池研究注入了新的活力。

机器学习凭借其强大的数据处理和预测能力,在锂离子电池的材料筛选、性能预测、电极设计与结构优化、制造效率提升及质量控制等方面展现出显著优势。通过挖掘大量实验和计算数据中的价值信息,机器学习能够加速材料筛选进程,预测电池在不同条件下的性能表现,为研究人员提供科学决策依据。同时,机器学习还能优化电池设计与结构,提高电池的能量密度和安全性,推动电池制造过程的智能化和高效化。

此外,机器学习技术还促进了锂离子电池研究与化学、物理学、计算机科学等多个学科的交叉融合,为锂离子电池的创新应用提供了有力支持。在智能电网、可穿戴设备和无人机等新兴领域中,机器学习通过优化电池设计和性能预测等手段,满足了复杂多变的性能要求,推动了相关领域的创新发展。

机器学习在锂离子电池研究中发挥着越来越重要的作用,不仅加速了材料筛选与性能预测的进程,还推动了电池设计与制造的智能化和高效化。随着大数据和人工智能技术的不断进步以及跨学科合作的深入发展,我们有理由相信,机器学习将继续引领锂离子电池技术的创新与发展,为人类社会的可持续发展贡献更多力量。



FLOWER CLUSTERS

学习目标

1.使学员了解锂离子电池的基本原理和特性,以及机器学习在电池技术中的应用背景。通过学习Python编程语言,使学员能够熟练使用基础语法、函数、模块、包和面向对象编程,让学员熟悉并掌握机器学习库。

2.使学员理解神经网络的基础知识,包括激活函数、损失函数、梯度下降与反向传播,并能够使用Pytorch构建全连接神经网络,掌握深度学习中的正则化技术、优化算法和超参数调优方法,了解并能够应用循环神经网络、卷积神经网络、图神经网络、注意力机制、Transformer架构、生成对抗网络和变分自编码器。

3.培养学员在锂离子电池正极材料特性工程方面的实战能力。通过实战项目,使学员能够使用机器学习技术预测锂离子电池性能、稳定性,并进行电池性能分类。理解如何将机器学习与分子动力学模拟、第一性原理计算以及实验数据结合,以加速新材料的发现和电池性能的优化。

4.电池管理系统(BMS)的智能化学习:使学员了解BMS的功能与组成,并能够应用机器学习技术进行电池充放电策略的优化。培养学员使用机器学习技术进行锂离子电池的实时充电状态(SOC)和健康状态(SOH)估计。

5.拓宽学员的国际视野,让他们接触和学习国际上的先进研究成果。培养具备跨学科整合能力的学员,使他们能够在锂离子电池、深度学习、数据科学等领域之间架起桥梁,开展创新性研究。


讲师介绍

主讲老师张老师来自全国重点大学、国家“985工程”、“211工程”重点高校,长期从事锂离子电池研究,特别是在利用计算模拟方法和机器学习技术解决锂离子电池领域的关键问题。在多个国际高水平期刊上发表 SCI检索论文30余篇。他的授课方式深入浅出,能够将复杂的理论知识和计算方法讲解得清晰易懂!

课程目录




第一天上午

锂离子电池与机器学习背景

Python基础语法、函数、模块和包、面向对象编程

机器学习库介绍:Numpy、Pandas、Matpliotlib、Seaborn、Scikit-learn

第一天下午

监督学习与非监督学习

K-近邻、支持向量机、决策树、线性回归、逻辑回归

实战一:使用机器学习预测锂离子电池性能:特征工程描述包括电池的充放电循环数据、温度、电流、电压、电池的制造参数、材料特性等,选择不同的机器学习模型,例如决策树、随机森林、支持向量机,最后进行性能评估。

第二天上午

K-均值聚类、层次聚类、PCA、t-SNE

集成学习:随机森林、Boosting

交叉验证、性能指标、模型评估与选择、网格搜索

实战二:聚类分析在电池性能分类中的应用:根据电池的容量、能量密度、内阻、循环稳定性等特征,选择合适的聚类算法,并通过降维判断聚类结果的有效性。

第二天下午

神经网络基础、激活函数、损失函数、梯度下降与反向传播

Pytorch构建全连接神经网络

深度学习中的正则化技术:L1、L2、Dropout

优化算法:SGD、Adam、RMSprop

超参数调优:网格搜索、随机搜索、贝叶斯优化

实战三:基于深度学习的高熵材料的虚拟高通量筛选: 收集和整理用于训练的数据集,包括高熵材料的化学组成、晶体结构、物理化学性质等,使用准备好的数据集对深度学习模型进行训练,并采用交叉验证等方法来评估模型的泛化能力。

第三天上午

循环神经网络

卷积神经网络

图神经网络

注意力机制

Transformer架构

生成对抗网络

变分自编码器

实战四:基于图神经网络的锂离子电池性能预测:构建图神经网络模型,选择合适的架构,如GCN、GAT等,来学习材料图特征节点和边的表示,用于预测锂离子电池性能。

第三天下午

锂离子正极材料的特征工程

实战五:基于机器学习的锂金属正极材料的稳定性预测:选择合适的机器学习模型,如支持向量机、随机森林、集成学习、神经网络,使用适当的评估指标,如准确率、召回率、F1分数等,来衡量模型预测锂金属正极材料稳定性的性能。

实战六:实验引导的高通量机器学习分析:讲解将机器学习模型集成到实验流程中,优化实验过程,实现从实验设计到数据分析的自动化和智能化。

第四天上午

基于锂离子电池的机器学习与多尺度模拟

机器学习、分子动力学模拟与第一性原理计算

机器学习与实验结合

实战七:机器学习加速寻找新的固体电解质:构建包含已知固体电解质材料的数据库,包括它们的化学组成、晶体结构、离子导电性等属性,利用训练好的模型对大量候选材料进行虚拟筛选,预测它们的离子导电性,快速识别出有潜力的新固体电解质。

第四天下午

机器学习在电池管理系统中的应用介绍

电池管理系统(BMS)的功能与组成

电池充放电管理

电池安全与保护

电池健康状态的指标

电池老化分析

基于机器学习的电池充放电策略优化

第五天上午

实战八:电池管理系统:物理模型与机器学习集成:利用机器学习预测电池的长期性能和寿命,将机器学习集成到BMS中,实现对电池状态的实时监控和控制,定期评估机器学习模型的性能,并根据新的数据和反馈进行优化。

实战九:机器学习用于锂离子电池的实时充电状态(SOC)和健康状态(SOH)估计:收集电池在不同充放电条件下的运行数据,包括电压、电流、温度、充放电时间等,训练机器学习模型,并通过交叉验证等方法评估模型的准确性和泛化能力,实现对SOC和SOH的实时估计。

第五天下午

实战十:基于GRU、LSTM、Transformer锂电池剩余寿命预测:重点讲解如何设计GRU、LSTM或Transformer模型的架构,包括层数、隐藏单元的数量、输入和输出维度等,比较GRU、LSTM和Transformer模型的性能。

实战十一:从实验数据出发重构Mn-DRX设计思路:讲解通过深度学习模型预测无序岩盐(DRX)材料结构和性能之间的关系,构造给定条件下的电压和容量之间的关系映射,讲解DRXNet模型将正极材料化学组分、电化学测试电流密度、工作电压窗口以及循环次数作为输入,来预测若干条放电曲线。


部分案例图片:




#

课程特色及授课方式

线上授课时间和地点自由,建立专业课程群进行实时答疑解惑,理论+实操授课方式结合大量实战案例与项目演练,聚焦人工智能技术在锂电池领域的最新研究进展,课前发送全部学习资料,课程提供全程答疑解惑;

完全贴合学员需求的课程体系设计,定期更新的前沿案例,由浅入深式讲解,课后提供无限次回放视频,免费赠送二次学习,发送全部案例资料,永不解散的课程群,可以与相同领域内的老师同学互动交流问题,让求知的路上不再孤单!


增值服务:

1、凡参加人员将获得本次课程学习资料及所有案例模型文件;

2、课程结束可获得本次所学专题全部回放视频;

3、课程会定期更新前沿内容,参加本次课程的学员可免费参加一次本单位后期举办的相同专题课程(任意一期)


#

课程时间

机器学习锂离子电池时间:

2024.09.14----2024.09.15(上午9.00-11.30下午13.30-17.00)

2024.09.18---2024.09.19(晚上19.00-22.00)

2024.09.21----2024.09.22(上午9.00-11.30下午13.30-17.00)

腾讯会议 线上授课(共五天课程 提供全程视频回放)

#

课程费用

机器学习锂离子电池专题课程报名费用

报名费用:每人每班¥4680(包含会议费、资料费提供课后全程回放资料)

提前报名缴费可享受300元早鸟价优惠(仅限前十名)

优惠一:两人团报每人优惠300元

优惠二:两人以上团报每人可享受600元


课程福利课程会定期更新前沿内容,参加本次课程的学员可免费参加一次本单位后期举办的相同专题课程(任意一期)


报名费用可开具正规报销发票及提供相关缴费证明、邀请函,可提前开具报销发票、文件用于报销

报名咨询方式(请扫描下方二维码)

RECRUIT

联系人陈老师

咨询电话|15652523032(微信同号)


硬件之路学习笔记 硬件电路学习记录,学习电源、运放、电阻电容、电感、MOS管、三极管等;一起学习一起进步。
评论 (0)
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 581浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 691浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 464浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 341浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 118浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 242浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 520浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 317浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 134浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 59浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 64浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 716浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 414浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦