Linux启动流程全梳理|思维导图|流程图

C语言与CPP编程 2024-08-28 09:01

转自:网络

Linux启动流程总的来说可以分成三个阶段



Linux启动流程图


第一步:上电

Ø在 x86 系统中,将 1M 空间最上面的 0xF0000 到 0xFFFFF 这 64K 映射给 ROM。

Ø当电脑刚加电的时候,会做一些重置的工作,将 CS 设置为 0xFFFF,将 IP 设置为 0x0000,所以第一条指令就会指向 0xFFFF0,正是在 ROM 的范围内。

Ø在这里,有一个 JMP 命令会跳到 ROM 中做初始化工作的代码,于是,BIOS 开始进行初始化的工作




第二步:BIOS启动

固件初始化:计算机开机后,UEFI固件会进行初始化,包括硬件初始化、自检和加载UEFI固件驱动程序等。


启动设备选择:UEFI固件会检测并识别可启动的设备,如硬盘、光盘、USB设备等。它会根据预设的启动顺序或用户设置的启动选项,选择一个可启动的设备作为启动介质。


UEFI固件驱动程序加载:UEFI固件会加载设备上的UEFI固件驱动程序,这些驱动程序负责与硬件设备进行交互,以便后续的启动过程能够正常进行。


UEFI应用程序加载:UEFI固件会加载位于启动介质上的UEFI应用程序,如引导加载程序(Bootloader)或操作系统的引导管理器。这些应用程序通常位于EFI系统分区中,以.efi文件格式存在。


引导加载程序执行:加载的引导加载程序会接管控制权,负责加载操作系统内核或其他引导组件。常见的引导加载程序有UEFI Shell、GRUB、rEFInd等。


第三步:Linux启动



Linux启动-引导

Ø我们可以通过BIOS界面选择硬盘启动项进入OS,那BIOS是怎么发现这个硬盘里有OS?

Ø答案就是MBR(Master Boot Record),

ØMBR是放在硬盘的第一个扇区,一共512字节,

Ø可以分成两部分:

Ø主引导记录:安装启动引导程序的地方,446字节,

Ø分区表:记录整个硬盘分区的的状态此外,64字节


Linux启动-引导EBR/VBR

Ø找到MBR后下一步做啥?


Ø(1)如果查找分区表时发现操作系统装在主分区,然后执行已载入的MBR中的boot loader代码,加载该激活主分区的VBR中的boot loader,至此,控制权就交给了VBR的boot loader


Ø(2)如果操作系统不是装在主分区,那么肯定是装在逻辑分区中,所以查找完主分区表后会继续查找扩展分区表,直到找到EBR所在的分区,然后MBR中的boot loader将控制权交给该EBR的boot loader




Linux启动-引导GRUB2介绍

ØGNU GRUB(GRand Unified Bootloader简称“GRUB”)是一个来自GNU项目的多操作系统启动程序。GRUB是多启动规范的实现,它允许用户可以在计算机内同时拥有多个操作系统,并在计算机启动时选择希望运行的操作系统。GRUB可用于选择操作系统分区上的不同内核,也可用于向这些内核传递启动参数。


Ø生成配置文件:grub2-mkconfig -o /boot/grub2/grub.cfg

Ø安装:grub2-install /dev/sda


Linux启动-引导GRUB2加载

ØGrub2 第一个安装的就是 boot.img,BIOS 完成任务后,会将 boot.img 从硬盘加载到内存中的 0x7c00 来运行。boot.img会加载 core.img。如果从硬盘启动的话,这个扇区里面是 diskboot.img,diskboot.img 的任务就是将 core.img 的其他部分加载进来,先是解压缩程序 lzma_decompress.img,再往下是 kernel.img,最后是各个模块 module 对应的映像。这里需要注意,它不是 Linux 的内核,而是 grub 的内核。


Ø随着我们加载的东西越来越大,实模式这 1M 的地址空间实在放不下了,所以在真正的解压缩之前,lzma_decompress.img 做了一个重要的决定,就是调用 real_to_prot,切换到保护模式,这样就能在更大的寻址空间里面,加载更多的东西。




Linux启动-0/1号进程

Øset_task_stack_end_magic(&init_task)。这里面有一个参数 init_task,它的定义是 struct task_struct init_task = INIT_TASK(init_task)。

Ø它是系统创建的第一个进程,我们称为 0 号进程。这是唯一一个没有通过 fork 或者 kernel_thread 产生的进程,是进程列表的第一个。


Ø1.trap_init()中断初始化

Ø2.mm_init()内存初始化

Ø3.sched_init()调度策略初始化

Ø4.vfs_caches_init()基于内存文件系统rootfs初始化

Ø5.start_kernel()->rest_init()其他方面的初始化

Ørest_init 的第一大工作是,用 kernel_thread(kernel_init, NULL, CLONE_FS) 创建第二个进程,这个是 1 号进程。1 号进程对于操作系统来讲,有“划时代”的意义。


Linux启动-ramdisk

Øinit 程序是在文件系统上的,文件系统一定是在一个存储设备上的,例如硬盘。Linux 访问存储设备,要有驱动才能访问。如果存储系统数目很有限,那驱动可以直接放到内核里面,但是文件系统的格式有很多,全都放进内核那内核就太大了。

Ø这该怎么办呢?

Ø我们只好先弄一个基于内存的文件系统。内存访问是不需要驱动的,这个就是 ramdisk。这个时候,ramdisk 是根文件系统。

Ø运行 ramdisk 上的 /init,等它运行完了就已经在用户态了。/init 这个程序会先根据存储系统的类型加载驱动,有了驱动就可以设置真正的根文件系统了。有了真正的根文件系统,ramdisk 上的 /init 会启动文件系统上的 init。


Linux启动-init介绍

Ø前面0/1进程都属于内核线程,ps pid=1的是init进程

Ø if (ramdisk_execute_command) {

Øret = run_init_process(ramdisk_execute_command);

Ø...... }

Ø......

Øif (!try_to_run_init_process("/sbin/init") ||

Ø!try_to_run_init_process("/etc/init") ||

Ø !try_to_run_init_process("/bin/init") ||

Ø!try_to_run_init_process("/bin/sh")) return 0

Ø它会尝试运行 ramdisk 的“/init”,或者普通文件系统上的“/sbin/init”“/etc/init”“/bin/init”“/bin/sh”。不同版本的 Linux 会选择不同的文件启动,但是只要有一个起来了就可以。


ØInit类型:

ØSysV:CentOS 5之前, 配置文件/etc/inittab

ØUpstart:CentOS 6,配置文件/etc/inittab,/etc/init/*.conf

ØSystemd:CnetOS7, 配置文件/usr/lib/system/syste,/etc/systemd/system


Linux启动-运行级别



Linux启动-fstab

Ø任何硬件设备连接后,操作系统使用硬件,即需要挂载。windows只不过是自动“挂载”了,linux需要手动自己搞。在Linux系统下,例如每次挂载/dev/sdb1(例如U盘设备文件)需要手动使用命令mount。当然,每次重启,开启时,硬盘一般也是被自动挂载的,而自动挂载的信息,就记录在/etc/fstab文件中。

Ø 系统每次启动都会读取/etc/fstab中的配置内容,自动挂载该文件中被记录的设备和分区。

Ø 第一列:设备文件或UUID或label(三者的区别看下面)

Ø 第二列:设备的挂载点(空目录)

Ø 第三列:该分区文件系统的格式(可以使用特殊的参数auto,自动识别分区的分区格式)

Ø 第四列:文件系统的参数,设置格式的选项

Ø 第五列:dump备份的设置(0表示不进行dump备份,1代表每天进行dump备份,2代表不定日期的进行dump备份)

Ø 第六列:磁盘检查设置(其实是一个检查顺序,0代表不检查,1代表第一个检查,2后续.一般根目录是1,数字相同则同时检查)


Linux启动-用户登录

一般来说:用户登录方式有三种

1.命令行登录

2.ssh登录

3.图形登录


Linux是多任务多用户的操作系统,它允许多人同时在线工作。但每个人都必须要输入用户名和密码才能验证身份并最终登录。但登陆时是以图形界面的方式给用户使用,还是以纯命令行模式给用户使用呢?这是终端决定的,也就是说在登录前需要先加载终端。


现代Linux上,console终端已经和原始的意义不太一样了,其设备映射在/dev/console上,所有内核输出的信息都输出到console终端,而其他用户程序输出的信息则输出到虚拟终端或伪终端。


总结下:

/dev/console:控制台终端

/dev/ttyN:虚拟终端,ctrl+alt+f[1-6]切换的就是虚拟终端

/dev/ttySN:串行终端

/dev/pts/N:伪终端,ssh等工具连接过去的活着图形终端下开启的命令行终端就是伪终端。


Linux启动-用户切换

Linux预设提供了六个命令窗口终端机让我们来登录。


默认我们登录的就是第一个窗口,也就是tty1,这个六个窗口分别为tty1,tty2 … tty6,你可以按下Ctrl + Alt + F1 ~ F6 来切换它们

Ø

Ø针对我的VM Virtual BOX ctrl+alt + F1是图形终端, ctrl+alt + F2~F6命令行终端


Linux启动流程思维导图

EOF

你好,我是飞宇。日常分享C/C++、计算机学习经验、工作体会,欢迎点击此处查看我以前的学习笔记&经验&分享的资源。

我组建了一些社群一起交流,群里有大牛也有小白,如果你有意可以一起进群交流。

欢迎你添加我的微信,我拉你进技术交流群。此外,我也会经常在微信上分享一些计算机学习经验以及工作体验,还有一些内推机会

加个微信,打开另一扇窗

经常遇到有读者后台私信想要一些编程学习资源,这里分享 1T 的编程电子书、C/C++开发手册、Github上182K+的架构路线图、LeetCode算法刷题笔记等精品学习资料,点击下方公众号会回复"编程"即可免费领取~


感谢你的分享,点赞,在看三  

C语言与CPP编程 C语言/C++开发,C语言/C++基础知识,C语言/C++学习路线,C语言/C++进阶,数据结构;算法;python;计算机基础等
评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 70浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 167浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦