深度解读边缘设备全以太网方案10BASE-T1S,这份白皮书速速收藏

原创 安森美 2024-08-27 18:59

点击蓝字 关注我们

🎁点击下载安森美(onsemi)系统方案指南合集赢京东卡


10BASE-T1S是实现工业4.0、汽车 IVN和智能建筑中边缘设备全以太网化的缺失环节,可与促进人工智能和机器学习的100/1000BASE-T1以太网主干网对接。这是因为10BASE-T1S可直接连接到以太网MAC层下数据链路层 (L2) 的现有OSI参考模型层,无需使用低效且昂贵的协议网关。10BASE-T1S多点传送SPE也是10BASE-T1L长距离(1千米)点对点传输的最佳补充。《边缘设备全以太网方案:10BASE-T1S》白皮书将系统介绍探讨10BASE-T1S如何在工业和汽车中运作,本文为第二部分,将介绍10BASE−T1S控制器架构、OPEN联盟(Open Alliance)SPI接口和块、安森美(onsemi)的NCN26010 10BASE−T1S控制器等。



10BASE−T1S控制器架构

三种典型的10BASE−T1S控制器体系结构如下图1所示。在左侧,MAC(媒体访问控制)与PHY(物理层器件)和PLCA一起集成到10BASE−T1S控制器中,仅需通过五个SPI(串行外设接口)引脚与MCU通信。


在图1的中间,MCU包含MAC,而10BASE−T1S控制器包含PHY和PLCA,通过16个外部引脚的MII(媒体独立接口)接口(第22条)与配套MCU通信。在图1的最右侧,MCU包含MAC、PLCA和ePHY,而10BASE−T1S控制器包含PMD(Physical Medium Dependent)。从本质上讲,ePHY包含大部分数字PHY电路,PMD包含大部分模拟PHY电路。还开发了一种11引脚RMII(精简媒体独立接口),但多项研究表明,使用RMII与PLCA存在互操作性问题。


图1. 三个10BASE−T1S控制器、MAC+PHY、仅PHY或PMD


下图2说明了这三种10BASE−T1S控制器体系结构,如何适用于100/1000BASE−T1以太网中继分支到多个10BASE−T1S子节点中。


图2.100/1000BASE−T1分支到10BASE−T1S子节点


OPEN联盟(Open Alliance)SPI接口和块

2021年12月20日,以太网OPEN联盟发布了“10BASE−T1x MAC−PHY串行接口”规范(Open_Alliance_10BASET1x_MAC−PHY_Serial_Interface_ V1.1.pdf),该规范描述了MAC−PHY 10BASE−T1x控制器和配套MCU之间的串行接口。


MAC−PHY被指定为通过下图3所示的单个全双工串行外围接口承载数据(以太网帧)和控制(寄存器访问)事务。接口至少支持15 MHz的SPI时钟(SCK)速率。可以以较慢的速度操作,但供应商通常支持较快的速度。


图3.开放式串行10BASE−T1x接口的引脚


有时,MCU可能太忙,无法在给定时间通过SPI传输(TX或RX)整个以太网帧。在这种情况下,以太网帧可以以数据块的形式传输。块可以是8、16、32或64字节。SPI会为全速流量运行的STM32 MCU增加大约6%−8%的负载开销。


安森美的NCN26010 10BASE−T1S控制器

图4显示了2022年6月发布的NCN26010 10BASE−T1S控制器内部框图,完全符合IEEE802.3cg规范,适用于单对以太网(SPE)上的多点、半双工、10 Mb/s速率。NCN26010 采用QFN32、4 mm x 4 mm封装,包含MAC、PLCA和PHY(RX+TX)。NCN26010单3.3 V供电,使用25 MHz晶振或时钟源,支持由上述OPEN联盟定义的OA SPI接口,以及增强的噪声抗扰度。


图4.NCN26010 10BASE−T1S控制器内部框图


安森美的NCN26000 10BASE−T1S PHY(MII)

下图5显示了2024年4月发布的NCN26000 10BASE−T1S物理层器件内部框图。与NCN26010一样,完全符合IEEE802.3cg规范,适用于单对以太网(SPE)上的多点、半双工、10 Mb/s数据速率。


与NCN26010相比,QFN32、5 mm x 5 mm封装的NCN26000中仅包含PLCA−RS和PHY(RX+TX)。作为仅具有PHY器件的NCN26000,拥有和NCN26010相同的高级PHY功能。单3.3 V供电,使用25 MHz晶振或时钟源,支持符合IEEE802.3的MII接口,以及增强的抗噪声功能,相关内容将在下文中进一步讨论。

图5. NCN26000 10BASE−T1S控制器内部框图


Linux对NCN26010和NCN26000的支持

以太网最重要的因素之一是“免费”提供的大量软件。安森美认识到这个大型生态系统的重要性,Linux是支撑新技术开发的重要工具,尤其在嵌入式系统中。因此,NCN6010完全支持Linux内核(从6.5版本开始),对NCN26000的支持已经完全集成到Linux内核中(从6.3版开始)。


截至2023年7月,设备驱动程序处于测试阶段,支持NCN26010的所有主要功能,与Linux网络基础设施和编程模型无缝集成。测试版驱动程序可应客户要求提供。


多点连接线路终端

图6展示了IEEE802.3cg规定的10BASE−T1S多点线路终端,其中多点SPE电缆的两端需要100Ω差分边缘终端(最小25米)。


节点PMA(物理介质附件)的传输,将通过两个100nF电容(交流耦合)驱动正边缘或负边缘,通过标称最大10cm距离(传输线短截线)传播到MDI(介质相关接口)并进入电缆。非传输节点的PMA保持高阻抗,不影响传输线,最大限度地减少短截线的不连续性。


图6. 10BASE−T1S线路终端


MDI连接器和PMA信号

下图7展示了两个MDI(介质相关接口)连接器示例,以及IEEE802.3cg规范中的PMA(物理介质连接)引脚与信号的映射关系。IEEE802.3cg规范为10BASE−T1S多点拓扑提供了18 AWG到26 AWG的线缆规格指南。


图7. MDI连接器IEC 63171−1和IEC 63171–6


10BASE−T1S多点终端,带NCN260x0评估板

图8说明了如何使用NCN26010评估板作为10BASE−T1S多点连接终端。物理上位于电缆端点的两个评估板,JP2开关关闭。两个端点内的所有其他节点都打开JP2开关。如果客户希望将NCN26010评估板用于“Engineered PoDL”(数据线供电),则JP2和100Ω无源电阻需要移动到100 nF 交流耦合电容的另一侧。


在任务模式下,NCN26010具有GPIO,可用于启用或禁用100Ω终端。


图8. NCN26010评估板多点终端


10BASE−T1S多点分段中的故障节点

如果任何10BASE−T1S节点发生故障,假设PMA信号BI_DA+和BI_DA-对地短路,两个PMA信号都与MDI交流耦合,则故障节点不会引起10BASE−T1S其他节点故障。


随着PLCA循环的迭代,发生故障的节点始终对其他节点保持静默,并且PLCA循环将继续执行循环总线仲裁过程。管家固件程序可以加载到PLCA协调器(节点0)的MCU中,监测每个节点的延长静默,以确定节点是否发生故障,而不是正常运行中,但没有数据传输的正常情况。


发生故障的PLCA协调器(节点0)和CSMA/CD

如果PLCA协调器发生故障,则10BASE−T1S将恢复为CSMA/CD(载波侦听多路访问/冲突检测)。CSMA/CD允许任意节点在任意时间传输到总线上。如果发生冲突,冲突节点会识别出冲突,然后在再次传输之前“随机等待时间”。概率告诉我们,多个随机等待时间不会同时结束。因此,在每个节点的“随机等待时间”之后,该节点将重试传输。


图9说明了8个节点和64字节有效数据的PLCA相对于CSMA/CD的优势。在图9的左侧,PLCA吞吐量与传输节点的数量无关,为9.6 Mb/s。相反,CSMA/CD吞吐量随着节点数量的增加而急剧下降。在图9的右侧,PLCA的访问延迟范围为10微秒到100微秒,具体取决于总线负载百分比。相反,CMSA/CD访问延迟的范围从100微秒到10毫秒。


图9. 8个节点和64字节有效数据的PLCA与CSMA/CD的比较


将节点添加到现有10BASE−T1S多点连接段

每个节点都需要有一个不同的PLCA编号。但插入额外的节点时,并没有任何规则或协议来定义这一点。


然而,一个可行的方案可能是:

−在CSMA/CD中启动新节点。

−协调器节点可以每10秒进行一次“角色调用”,并获取电缆上所有站点的MAC地址(这需要用户定义专用以太网帧)。

−协调器保存所有MAC地址的列表,并为其分配一个PLCA ID,通过专用以太网帧进行通信。

−一旦所有站点知道其地址,协调器“命令”所有站点进入PLCA。


这只是一个例子,可能还有其他算法可以实现同样的效果。这完全取决于客户希望如何进行PLCA ID分配。


PMA线路编码与信号幅度

PMA(物理介质附件)的10BASE−T1S线路编码为4B/5B+DME(差分曼彻斯特编码),直流平衡,差分信号峰峰值为1.0 V ±20%。


NCN260x0增强噪声抗扰度(ENI)

根据IEEE802.3cg规范,发送器输出电压幅度为峰-峰值1 V ±20%。当总噪声接近500 mV的差分峰-峰值时,10BASE−T1S的信号完整性可能会受到影响,导致过多的比特误码或错误的载波检测。NCN26010和NCN26000包含一种称为增强噪声抗扰度(ENI)的功能,当总噪声超过500 mV峰-峰值时,该功能可以在不出现误码下,实现10 Mb/s的数据通信。


为了展示NCN260x0 ENI的优势,我们创建了图10所示的测试工作台,在禁用ENI的情况下,我们通过30米的CAT5e UTP(非屏蔽双绞线)电缆将以太网帧从2号开发板(TX)发送到3号开发板(RX)。


图10. 测试工作台


完整版内容,请扫码下载白皮书查阅。


⭐点个星标,茫茫人海也能一眼看到我⭐


别着急走,记得点赞在看


安森美 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 88浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 79浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 96浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 118浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 112浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 167浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 110浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 91浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 82浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 97浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 96浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 96浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 106浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 92浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦