【光电智造】TDI线阵相机的基本原理与技术特征

今日光电 2024-08-24 18:00

 今日光电 

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

时间延迟积分(Time Delay and Integration, TDI)线阵相机技术是现代高速、高精度图像采集领域的一项革命性创新。自20世纪70年代末由Eastman Kodak公司首次开发以来,TDI技术已经在过去几十年中经历了显著的演进和提升。其核心原理基于光电荷在多级像素阵列中的同步转移与累积,从而在保持高扫描速度的同时显著提升信噪比和灵敏度。这种独特的工作机制使TDI线阵相机在诸如半导体晶圆检测、平板显示器检测、卫星遥感等要求极高图像质量和采集速度的应用领域中占据了不可替代的地位。

一、TDI基本原理

TDI传感器的基本结构通常由32至256行像素构成,每行像素数可达16K或更高。其工作过程可以用以下数学模型来描述:
S(x) = Σ(i=1 to N) Pi(x)
其中,S(x)为最终输出信号,N为TDI级数(即像素行数),Pi(x)为第i行在位置x处接收的光信号。这个公式清楚地表明了TDI技术的核心思想:通过多次累积来增强信号强度。

TDI的工作过程可以更详细地描述如下:a) 当光线照射到第一行像素上时,产生初始的光电荷。b) 在下一个时钟周期,这些电荷被精确地转移到第二行像素。c) 同时,第一行像素继续接收新的光子并产生新的电荷。d) 这个过程在随后的像素行中持续进行,每一行都在接收新的光子并累积来自前一行的电荷。e) 当电荷到达最后一行像素时,累积的信号被读出,形成最终的图像信号。如下图1.1所示:

图1.1 TDI原理


二、信噪比提升机制

TDI技术最显著的优势是大幅提高了信噪比(SNR)。理论上,N级TDI可以将SNR提高√N倍。这可以用以下公式表示:
SNR_TDI = √N * SNR_单行
其中,SNR_TDI是TDI传感器的信噪比,SNR_单行是单行传感器的信噪比,N是TDI级数。

这种信噪比的提升机制可以从统计学角度进行解释。假设每个像素接收到的光子数遵循泊松分布,那么信号强度的标准差与信号强度的平方根成正比。当我们累积N次信号时,总信号强度增加N倍,而噪声(标准差)仅增加√N倍,因此信噪比提高了√N倍。

三、时间同步机制

TDI技术的另一个关键在于转移速度与被检测物体的移动速度必须精确同步。这种同步关系可以用以下公式表示:

v = d * f

其中,v是物体移动速度,d是像素尺寸,f是行频率(即电荷转移频率)。

图3.1 应用场景


精确的同步对于获得清晰的图像至关重要。如果同步不准确,会导致图像模糊或产生"鬼影"。为了实现高精度同步,通常需要使用高精度编码器或其他精密定时设备。在最新的系统中,甚至采用了基于机器学习的自适应同步算法,能够实时调整电荷转移速度以适应微小的速度变化。

四、TDI vs 传统线扫描技术

相较于传统的线扫描技术,TDI技术具有以下显著优势:

图4.1 技术优势

4.1 更高的灵敏度: 由于信号在多个像素上累积,TDI技术可以在相同的曝光时间内捕获更多的光子,从而提高灵敏度。这使得TDI相机特别适合低照度条件下的高速成像。灵敏度的提升可以用以下公式量化:

灵敏度提升 = N * 单行灵敏度

其中N为TDI级数。

4.2 更高的信噪比: 如前所述,TDI技术可以显著提高信噪比,这对于检测微小缺陷或细微结构至关重要。在实际应用中,信噪比的提升通常略低于理论值√N,这主要是由于暗电流累积和电荷转移效率等因素的影响。

4.3 更高的动态范围: TDI技术允许在不饱和的情况下捕获更多的光子,从而扩大了相机的动态范围。动态范围的提升可以用以下公式估算:

动态范围提升 ≈ log2(N) + 单行动态范围

这意味着,例如,128级TDI可以理论上增加约7位的动态范围。

4.4 更高的行频: 由于每个像素接收光线的时间更长,TDI相机可以在更高的行频下工作,同时保持良好的图像质量。最新的TDI相机已经能够达到惊人的5000kHz的行频,这在传统线扫描相机中是难以想象的。

五、TDI的技术挑战

尽管TDI技术具有诸多优势,但其实现也面临一些技术挑战:

 图5.1 技术挑战

5.1 精确同步: 如前所述,TDI技术要求电荷转移速度与物体移动速度精确匹配。在实际应用中,这种同步往往难以做到绝对精确。即使微小的不同步也可能导致图像质量的显著下降。为了解决这个问题,现代TDI系统通常采用复杂的反馈控制系统和自适应算法。

5.2 暗电流累积: 由于电荷在多个像素中累积,暗电流也会随之累积,可能导致噪声增加。暗电流I_dark随温度T和TDI级数N的变化可以用以下简化模型描述:

I_dark ≈ N * I0 * exp(-Eg / (2kT))

其中I0是与材料相关的常数,Eg是半导体带隙,k是玻尔兹曼常数。

为了减少暗电流的影响,通常采用传感器冷却和暗电流补偿算法等技术。

5.3 电荷转移效率: 在多次电荷转移过程中,可能会发生电荷损失。电荷转移效率(CTE)是衡量这一过程的重要参数。对于N级TDI,总的电荷转移效率可以表示为:

CTE_total = (CTE_single)^N

其中CTE_single是单次转移效率。这表明,即使单次转移效率很高,多次转移后的累积效应也可能显著。为了保持高质量的图像,现代TDI传感器通常要求CTE_single达到0.99999或更高。

5.4 非线性响应: 在某些情况下,TDI传感器可能表现出非线性响应,特别是在高信号强度下。这种非线性性可以用多项式模型来描述:

S_out = a0 + a1S_in + a2S_in^2 + ...

其中S_out是输出信号,S_in是输入信号,ai是非线性系数。

为了补偿这种非线性,通常需要进行精确的校准和查找表(LUT)校正。

六、最新的TDI技术发展

图6.1 TDI技术发展方向

6.1 CMOS TDI: 传统上,TDI技术主要基于CCD传感器。然而,近年来CMOS TDI技术取得了重大突破。CMOS TDI结合了CMOS的低功耗、高集成度和CCD的高图像质量,代表了TDI技术的未来发展方向。CMOS TDI的一个关键优势是能够实现像素级模数转换(ADC),从而大大提高了读出速度和降低了噪声。

6.2 背照式TDI: 背照式技术通过增加量子效率来进一步提高TDI传感器的性能。在背照式传感器中,光线从硅衬底背面入射,避免了金属布线的遮挡,从而提高了量子效率。量子效率的提升可以用以下公式表示:

QE_背照式 ≈ QE_正面照式 / (1 - FF)

其中FF是填充因子,表示像素中光敏区域的比例。

6.3 多光谱TDI: 通过在同一芯片上集成多个具有不同光谱响应的TDI传感器,可以实现多光谱成像。这种技术为材料分析和缺陷分类提供了更多维度的信息。多光谱TDI的光谱分辨能力可以用光谱响应矩阵S来描述:

[R1, G1, B1] = S * [λ1, λ2, ..., λn] [R2, G2, B2] = S * [λ1, λ2, ..., λn] ...

其中[Ri, Gi, Bi]代表第i个TDI传感器的RGB响应,[λ1, λ2, ..., λn]代表入射光的光谱分布。

6.4 超高速TDI: 最新的TDI技术已经能够实现高达5000kHz的行频。这种超高速扫描能力主要得益于以下几个方面的技术进步:a) 高速CMOS读出电路 b) 并行ADC架构 c) 高带宽数据传输接口(如CoaXPress 12) d) 实时图像处理FPGA

图6.2 技术进步

在这种超高速下,对同步精度的要求更加严格。同步误差Δt与行频f之间的关系可以表示为:

图像模糊 ≈ v * Δt ≈ (d * f) * (Δf / f)

其中v是扫描速度,d是像素尺寸,Δf是频率误差。

七、TDI在半导体晶圆检测中的应用

在半导体晶圆检测等领域,TDI技术的高分辨率(可达16K像素/行)、高灵敏度(可达单光子级别)、高行频(现已达5000kHz)以及超过90dB的动态范围等特性使其成为不可或缺的工具。TDI相机能够在亚微米级别检测缺陷,同时满足12英寸大尺寸晶圆的快速扫描需求。

图7.1 晶圆检测(图像来源于网络https://zhuanlan.zhihu.com/p/66745768)

此外,TDI的线性扫描特性避免了面阵相机的透视畸变,确保了全幅面成像质量的一致性。这一特性对于大面积晶圆的精确检测尤为重要。

图7.2 TDI相机图像

图7.3 晶圆图像(图像来源于网络http://www.mnt-china.cn/productinfo/1191999.html)

随着集成电路制造工艺向5nm甚至更小节点迈进,对检测系统的要求越来越高。TDI技术在提升良品率、降低成本方面的作用愈发凸显。未来,随着人工智能和机器学习算法的深度集成,TDI相机有望实现更智能化的实时缺陷检测和分类,进一步推动半导体产业的技术进步。

来源:机器视觉沙龙


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦