GPGPU多处理器架构设计

智能计算芯世界 2024-08-20 17:44

流式多处理器(Stream Multi-processor,SM)是构建整个 GPU的核心模块(执行整个 Kernel Grid),一个流式多处理器上一般同时运行多个线程块。每个流式多处理器可以视为具有较小结构的CPU,支持指令并行(多发射)。流式多处理器是线程块的运行载体,但一般不支持乱序执行。每个流式多处理器上的单个Warp以SIMD方式执行相同指令。

下载链接:

基于标准PCIe接口的人工智能加速卡液冷设计白皮书(2024)
《服务器及存储用液冷部件技术规范合集》
1、第1部分:冷板
2、第2部分:连接系统
3、第3部分:冷量分配单元
4、第4部分:监控系统
《六大国产CPU架构分析报告》
1、开启国产CPU和AI芯片的腾飞之路
2、CPU生态价值与机遇研究
3、国产基础软硬件,重塑IT产业生态
4、中流击水:六大国产CPU厂商分析
5、聚力突破核心技术,信创产业扬帆起航
服务器研究框架
服务器系列技术(4本)
《RISC-V技术介绍及报告》
《飞腾CPU专题报告》
1、飞腾:国产CPU巨头,充分受益国产化浪潮
2、国产CPU全对比,飞腾有望异军突起
《国产CPU及研究框架》
1、国产CPU正从可用向好用转变,自主可控前景可期
2、国产CPU全对比,飞腾有望异军突起
3、专题报告:国产CPU研究框架
4、深度报告:CPU研究框架
《龙芯/海光CPU厂商专题报告》
算力大时代,处理器SoC厂商综合对比
AI领强算力时代,GPU启新场景落地

图 3-1 流式多处理器在GPU架构中的位置(以NVIDIA Tesla架构为例,修改自NVIDIA)

3.1 整体微架构

图 3-3是流式多处理器(SM,AMD称之为计算单元)微架构(根据公开文献和专利信息综合获得)。

流式多处理器按照流水线可以分为SIMT前端SIMD后端。整个流水线处理划分为六个阶段,包括取指、译码、发射、操作数传送、执行与写回。

图 3-2 GPGPU的流式多处理器结构划分

SIMD即单指令多数据,采用一个控制器来控制多组计算单元(或处理器),同时对一组数据(向量)中的每一个数据分别执行相同的操作从而实现空间并行性计算的技术。

SIMT即单指令多线程,多个线程对不同的数据集执行相同指令。SIMT的的优势在于无须把数据整理为合适的矢量长度,并且SIMT允许每个线程有不同的逻辑分支。

按照软件级别,SIMT层面,流式多处理器由线程块组成,每个线程块由多个线程束组成;SIMD层面,每个线程束内部在同一时间执行相同指令,对应不同数据,由统一的线程束调度器(Warp scheduler)调度。

一般意义上的CUDA核,对应于流处理器(SP),以计算单元和分发端口为主组成。

线程块调度程序将线程块分派给 SIMT 前端,线程在流式多处理器上以Warp为单位并行执行。

图 3-3 GPGPU的流式多处理器微架构

流式多处理器中的主要模块包括:

取指单元(I-Fetch):负责将指令请求发送到指令缓存。并将程序计数器 (PC)指向下一条指令。

指令缓存(I-Cache):如来自取指单元的请求在指令缓存中被命中,则将指令传送给译码单元,否则把请求保存在未命中状态保持寄存器(MSHR)中。

译码单元(Decode):将指令解码并转发至I-Buffer。该单元还将源和目标寄存器信息转发到记分牌,并将指令类型、目标地址(用于分支)和其他控制流相关信息转发到 SIMT 堆栈。

SIMT 堆栈(SIMT Stack):SIMT堆栈负责管理控制流相关的指令和提供下一程序计数器相关的信息。

记分牌(Scoreboard):用于支持指令级并行。并行执行多条独立指令时,由记分牌跟踪挂起的寄存器写入状态避免重复写入。

指令缓冲(I-Buffer):保存所有Warp中解码后的指令信息。Warp 的循环调度策略决定了指令发射到执行和写回阶段的顺序。

后端执行单元:后端执行单元包括CUDA核心(相当于ALU)、特殊功能函数、LD/ST单元、张量核心(Tensor core)。特殊功能单元的数量通常比较少,计算相对复杂且执行速度较慢。(例如,正弦、余弦、倒数、平方根)。

共享存储:除了寄存器文件,流式多处理器也有共享存储,用于保存线程块不同线程经常使用的公共数据,以减少对全局内存的访问频率。

3.2 取指与译码

图 3-4 GPU执行流程(修改自 GPGPU-Sim)

取指-译码-执行,是处理器运行指令所遵循的一般周期性操作。

取指一般是指按照当前存储在程序计数器(Program Counter,PC)中的存储地址,取出下一条指令,并存储到指令寄存器中的过程。在取指操作结束时,PC 指向将在下一个周期读取的下一条指令。

译码一般是指将存储在指令寄存器中的指令解释为传输给执行单元的一系列控制信号。

图 3-5 取指译码结构

在GPGPU中,译码之后要对指令进行调度,以保证后继执行单元的充分利用。这一调度通过线程束调度器(Warp Scheduler)实现。

线程束是为了提高效率打包的线程集合(NVIDIA称之为Warps,AMD称为Wavefronts)。在每一个循环中的调度单位是Warp,同一个Warp内每个线程在同一时刻执行相同命令。

取指与译码操作过程如下:

取指模块(I-Fetch)根据PC指向的指令,从内存中获取到相应的指令块。需要注意的是,在GPGPU中,一般没有CPU中常见的乱序执行。

图 3-5 取指模块

  1. 指令缓存(I-Cache)读取固定数量的字节(对齐),并将指令位存储到寄存器中。

  2. 对I-Cache的请求会导致命中、未命中或保留失败(Reservation fail)。保留失败发生于未命中保持寄存器 (MSHR) 已满或指令缓存中没有可替换的区块。不管命中或者未命中,循环取指都会移向下一Warp。
    在命中的情况下,获取的指令被发送到译码阶段。在未命中的情况下,指令缓存将生成请求。当接收到未命中响应时,新的指令块被加载到指令缓存中,然后Warp再次访问指令缓存。

  3. 指令缓冲(I-Buffer)用于从I-Cache中获取指令后对译码后的指令进行缓冲。最近获取的指令被译码器译码并存储在 I-Buffer 中的相应条目中,等待发射。

  4. 每个 Warp 都至少对应两个 I-Buffer。每个 I-Buffer 条目都有一个有效位(Valid)、就绪位(Ready)和一个存于此 Warp 的已解码的指令。有效位表示在 I-Buffer 中的该已解码的指令还未发射,而就绪位则表示该Warp的已解码的指令已准备好发射到执行流水线。

图 3-4 指令缓冲


当Warp内的I-Buffer 为空时,Warp以循环顺序访问指令缓存。(默认情况下,会获取两条连续的指令)这时对应指令在I-Buffer中的有效位被激活,直到该Warp的所有提取的指令都被发送到执行流水线。

当所有线程都已执行,且没有任何未完成的存储或对本地寄存器的挂起写入,则 Warp 完成执行且不再取指。当线程块中的所有Warp都执行完成且没有挂起的操作,标记线程块完成。所有线程块完成标记为内核已完成。

相对于CPU,GPU的前端一般没有乱序发射,每个核心的尺寸就可以更小,算力更密集。

3.3 发射

发射是指令就绪后,从指令缓冲进入到执行单元的过程。

在(译码后的)指令发射阶段,指令循环仲裁选择一个Warp,将I-Buffer中的发射到流水线的后级,且每个周期可从同一Warp发射多条指令

所发射的有效指令应符合以下条件

  1. 在Warp里未被设置为屏障等待状态;

  2. 在I-Buffer中已被设置为有效指令(有效位被置为1);

  3. 已通过计分板(Scoreboard)检查;

  4. 指令流水线的操作数访问阶段处于有效状态。

在GPU中,不同的线程束的不同指令,经由SIMT堆栈和线程束调度,选择合适的就绪的指令发射。

在发射阶段,存储相关指令(Load、Store等)被发送至存储流水线进行相关存储操作。其他指令被发送至后级SP(流处理器)进行相关计算。

3.3.1 SIMT堆栈

SIMT堆栈用于在Warp前处理SIMT架构的分支分化的执行。一般采用后支配堆栈重收敛机制来减少分支分化对计算效率的负面影响。

SIMT 堆栈的条目代表不同的分化级别,每个条目存储新分支的目标 PC、后继的直接主要再收敛 PC 和分布到该分支的线程的活动掩码。在每个新的分化分支,一个新条目被推到栈顶;而当 Warp 到达其再收敛点时,栈顶条目则被弹出。每个 Warp 的 SIMT 堆栈在该 Warp 的每个指令发出后更新。

线程束分化

从功能角度来看,虽然SIMT架构下每个线程独立执行,但在实际的计算过程中会遇到一些分支的处理,即有些线程执行一个分支,而另外的线程则执行其他分支。如果在同一个Warp内不同的线程执行不同的分支,就会造成线程束分化,导致后继SIMD计算的效率降低。因此应尽量避免线程束的分化。


图 3-6 线程束分化与重聚合

SIMT堆栈功能

SIMT堆栈模块可有效改善线程束分化引起的GPGPU执行单元利用率下降的问题。

SIMT堆栈重点解决:

控制流嵌套问题(Nested Control Flow)
在控制流嵌套中,一个分支严重地依赖另一个分支,这极大影响了线程的独立性。

如何跳过计算过程(Skip Computation)

由于线程束分支的存在,导致同一个Warp内的有些线程并不必要执行某些计算指令。

3) SIMT掩码

SIMT堆栈中使用了SIMT掩码(SIMT Mask)来处理线程束分化问题,以下例来说明掩码如何控制整个Warp的执行。

4) SIMT 掩码引起的死锁问题

SIMT 掩码可以解决Warp内分支执行问题,通过串行执行完毕分支之后,线程在Reconverge Point(重合点)又重新聚合在一起以便最大提高其并行能力。

但对于一个程序来说,如果出现分支就表明每个分支的指令和处理是不一致的,容易使一些共享数据失去一致性。如果在同一个Warp内如果存在分支,则线程之间可能不能够交互或者进行数据交换,在一些实际算法中可能使用锁定(Lock)机制来进行数据交换。但掩码恰恰可能因为调度失衡,造成锁定一直不能被解除,造成死锁问题

5) GPGPU解决死锁的方法

图 3-8 V100 Warp调度对比图[2]

解决死锁的方法如下:

NVIDIA为V100 中Warp内的每个线程都分配了一个PC指针和堆栈,将PC指针的颗粒度细化到每一个线程中去,保障数据交换避免死锁。(图3-5)

为避免细粒度的PC指针和堆栈与GPU的SIMT执行模型产生冲突,硬件仍以Warp为单位来进行线程调度。

使用了Schedule Optimizer(调度优化器)硬件模块来决定哪些线程可以在一个Warp内进行调度,将相同的指令重新进行组织排布到一个Warp内,并执行SIMD模型,以保证利用效率最大化[2]。

3.3.2 线程束调度与记分牌

进行线程束(Warp)调度的目的是充分利用内存等待时间,选择合适的线程束来发射,提升执行单元计算效率。

在理想的计算情况下,GPU内每个Warp内的线程访问内存延迟都相等,那么可以通过在Warp内不断切换线程来隐藏内存访问的延迟

GPU将不同类型的指令分配给不同的单元执行,LD/ST硬件单元用于读取内存,而执行计算指令可能使用INT32或者FP32硬件单元,且不同硬件单元的执行周期数一般不同。这样,在同一个Warp内,执行的内存读取指令可以采用异步执行的方式,即在读取内存等待期间,下一刻切换线程其他指令做并行执行,使得GPU可以一边进行读取内存指令,一边执行计算指令动作,通过循环调用(Round Robin)隐藏内存延迟问题,提升计算效率。

在理想状态下,可以通过这种循环调用方式完全隐藏掉内存延迟。但在实际计算流程中,内存延迟还取决于内核访问的内存位置,以及每个线程对内存的访问数量

内存延迟问题影响着Warp调度,需要通过合理的Warp调度来隐藏掉内存延迟问题。

1) 指令顺序调整的原因

在同一个Warp的单个线程中,调整发送到ALU将要执行的指令顺序,可以隐藏掉一部分内存延迟问题。例如读取指令和加法指令使用的是不同的硬件单元,在第一个时钟周期执行内存读取指令之后,下一个时钟周期不必等待读取内存指令,而是可以直接执行加法指令,从而实现一边计算一边读取,来提高整个运行效率。

但在实际情况中,后一个指令有可能是依赖于前一个指令的读取结果。要解决该问题就需要GPU提前对指令之间的依赖关系进行预测,解析出指令之间的独立性和依赖关系。

图 3-11动态线程束示例(来源:WILSON W. L. FUNG等)

2) 记分牌与指令顺序调整的方法

GPU在这里参考了CPU设计,为了解析指令之间的独立性,采用顺序记分牌(In-Order Scoreboard)。

对于单线程束情况

  1. 每个寄存器在记分牌中都对应一个标志位,用于表示该寄存器是否已被写入数据,如果置1则表示该寄存器已经被写入。

  2. 此时如果另外一个指令想要读或者写该寄存器,则会处于一直等待状态,一直到该寄存器的标志位被清零(表明之前写寄存器操作完成)。这样就可以阻止Read-After-Write和Write-After-Write的问题。

  3. 当顺序记分牌和顺序指令(In-Order Instruction)结合时,能避免Write-After-Read的问题。


图 3-11数据冲突与流水线结构相关

对于多线程束情况,将上述方法应用到GPU时,还需要解决两个问题:

  1. 由于有大量寄存器GPU,在每组寄存器中增加一个标志位将需要占用更多额外的寄存器。

  2. 在GPU中,一般会有很多个线程同时执行同一指令,一旦其执行的指令被打断,会有很多线程同时访问Scoreboard造成读取阻塞。

对于多线程束情况,可通过动态记分牌解决上面的两个问题:

图 3-9 记分牌Entry流程

  1. 为每个Warp创建几个入口(Entry),每个入口与一个即将被写但操作尚未完成的寄存器相对应。记分牌在指令进入指令缓冲区(Instruction buffer,I-Buffer)和写操作完成结果存入Register File时能被访问(图3-6)

  2. 当一个指令从内存中读取出来放入到I-Buffer时,将该指令中的源寄存器和目的寄存器与Entry做比较,看是否有其他指令集已经对该寄存器在做写操作,如果有则返回一个bit Vector,与该寄存器一起写入到I-Buffer中。如果该指令集的写操作完成了,将会刷新I-Buffer中的该指令集寄存器的bit Vector,将bit Vector清除掉。

  3. 另外如果一个指令做写操作,并需要将该寄存器放入Entry中,但是此Entry已经满了,那么该指令将会一直等待,或者被丢弃过一定时钟周期后被重新获取再次查看Entry是否满[3]。
下载链接:
英伟达GPU加速迭代,聚焦AI光通信核心厂商
《Computex 2024系列主题演讲合集》
1、Computex 2024系列AMD主题演讲:CPU+GPU+UA互联厂商 2、Computex 2024英伟达主题演讲:AI时代如何在全球范围内推动新的工业革命
科技前瞻专题:国际巨头的端侧AI布局(2024)
AIoT白皮书:AI硬化向实而生
异构大规模分布式网络设计与性能评估
2024面向未来的算力网络连接:中国算力网络市场发展白皮书
2024面向AIGC的数智广电新质生产力构建白皮书
2024大模型训练数据白皮书
存储器行业:双墙阻碍算力升级,四大新型存储应用探讨
生成式人工智能专题研究:国内大模型(生成式AI加速,国内厂商聚力突破)
《存储专题系列合集》
1、存储专题系列一:新应用发轫,存力升级大势所趋 
2、存储专题系列二:存力需求与周期共振,SSD迎量价齐升 
3、存储专题三:AI时代核心存力HBM
4、存储专题:AI发展驱动HBM高带宽存储器放量
机器人专题研究:产业发展概览(2024)
国产AI算力行业报告:浪潮汹涌,势不可挡(2024)
AI系列之HBM:AI硬件核心,需求爆发增长
2024中国“百模大战”竞争格局分析报告(2024)
2024年中国虚拟现实(VR)行业研究报告

《半导体行业深度报告合集(2024)》

《70+篇半导体行业“研究框架”合集》

700+份重磅ChatGPT专业报告
《人工智能AI大模型技术合集》
《56份GPU技术及白皮书汇总》


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。



温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论 (0)
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 341浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 557浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 458浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 104浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 213浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 49浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 316浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 341浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 300浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 54浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 305浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 114浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 247浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 120浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 345浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦