模拟芯视界|抗混叠滤波器设计技术如何改进有源射频转换器前端

原创 德州仪器 2024-08-17 12:03

欢迎再次来到我们的技术专栏——模拟芯视界。在上一期中,我们介绍了 4-20mA 变送器结构及其工作原理,以及使用通用半导体产品实现此类变送器的设计替代方案。


本次为大家带来的是《抗混叠滤波器设计技术如何改进有源射频转换器前端》。优化抗混叠滤波器 (AAF) 设计可以在所需频段内产生更好的信噪比 (SNR) 性能和更低的杂散或无杂散动态范围 (SFDR)。

引言

使用全差分放大器 (FDA) 的有源模数转换器 (ADC) 前端具有许多优点,例如更好的阻抗匹配、通带平坦性和信号增益。但是,如果您的下一次设计只需要 ADC 的部分频带,则有必要在 FDA 的输出和 ADC 的输入之间使用抗混叠滤波器 (AAF)。AAF 将在所需频段内产生更好的信噪比 (SNR) 性能和更低的杂散或无杂散动态范围 (SFDR)


对于任何一种 AAF 滤波器结构,您在使用过程中都需要权衡几个因素:滤波器阶数和拓扑,或者是否需要反向端接或串联电阻来增强 FDA 和 ADC 之间的接口。在本文中,我们将讨论这些 AAF 的细微差别,以及如何在下一次设计中避免可能遇到的问题。

AAF 设计方法

假定您已经为您的应用确定了正确的 FDA,将决定是使用低通还是带通滤波器,以便在 ADC 前面实现出色性能(带宽、信噪比和 SFDR),请执行以下三个步骤:


1. 了解放大器的特征负载阻抗 (RL)。为使放大器发挥卓越性能,应为放大器实现数据表中列出的正确直流负载或 RL。这是特征阻抗,通常可在规格表的顶部找到。


2. 确定要使用的最接近放大器输出端的正确输出串联电阻的起点。这有助于防止通带中出现不必要的峰值。通常还可在 FDA 的数据表 - LMH5401 8GHz、低噪声、低功耗、全差分放大器数据表中找到此信息。


3. 确定是否使用一个或多个外部并联电阻来反向端接

ADC 的输入,以及输入串联电阻的起始值,以便将ADC 与滤波器隔离。这些串联电阻还有助于减少非缓冲 ADC 中常见的通带中不必要的峰值和“反冲”。


图 1 展示了一个规格表示例。


图 1. 从 LMH5401 数据表中摘录的电气规格表,其中 RL = 200Ω


图 2 中展示的通用电路和表 1 中的滤波器参数列表适用于大多数高速差分 FDA 和 ADC 接口;您可以将两者用作 AAF 设计的基础。


虽然并非每个滤波器结构都完全相同,但图 2 可作为快速开始设计的蓝图。使用此设计方法有助于充分利用大多数高速 ADC 的相对高输入阻抗和驱动源 (FDA) 的相对低输出阻抗,从而更大限度地减小滤波器的插入损耗。

图 2. 具有带通滤波器的通用 FDA 和 ADC 接口


表 1. 滤波器参数定义

AAF 设计过程和参数

基本的 AAF 设计流程和指南包括:


1. 适当地设置外部 ADC 端接电阻 (RTADC)。这有助于 AAF 在其所需的频率响应范围内实现“实际”阻抗。


2. 根据经验或 ADC 数据表建议选择 RKB;通常情况下,该值介于 5Ω 至 50Ω 之间。


3. 使用方程式 1 计算滤波器负载阻抗,使 RTADC、RKB 和 RADC 的并联和串联电阻总和位于 100Ω 至 400Ω 之间。请参阅上一节中的建议。

ZAAFL - RTADC || (RADC + 2RKB) (1)


4. 选择放大器外部串联电阻 (RA)。此值通常介于 5Ω 至 50Ω 之间。RA 有助于抑制放大器输出响应,并减少通带中不必要的峰值。


5. 使用计算得出的 ZAAFL,以便放大器的总负载 (ZAL) 适合所选的特定差分放大器。请参阅上面“AAF 设计方法”部分中的步骤 1 并使用方程式 2:

ZAL = 2RA + ZAAFL (2)

请注意,ZAL 是 FDA 的特征 RL;因此,使用过高或过低的值都会对放大器的线性度产生不利影响。


6. 使用方程式 3 计算滤波器源电阻:

ZAAFS = ZO + 2RA (3)


7. 使用滤波器设计程序设计滤波器,如果可能,使用相同的源阻抗 ZAAFS 和负载阻抗 ZAAFL。这有助于减少滤波器中的损耗量。输入/输出阻抗之间的任何不匹配都将损失 10*log(输入 Z / 输出 Z)。例如,输入阻抗为 50Ω、输出阻抗为 200Ω 时,滤波器的损耗为 –6.0dB 或 10*log(50/200)。此外,使用比应用所需带宽多出或高出 10% 左右的带宽将能够满足每个应用的带宽需求,并有助于克服在滤波器实施过程中未实现的二阶和三阶寄生损耗。


在进行几次初步仿真后,快速检查电路的以下各项:


8. CAAF2 & 3 的值相对于 CADC 应该足够大,这样可以更大限度地降低滤波器对 CADC 变化的敏感度。


9. ZAAFL 与 ZAAFS 之比不应超过 6:7,这样滤波器才能符合大多数滤波器表和设计程序的要求。理想情况下,它们应该相同,以尽可能减少损耗,但这通常是不可能的。


10. 尽量使用几皮法的 CAAF2 值,以便更大限度地降低对寄生电容和元件变化的敏感度。


11. 电感器 LAAF1 和 LAAF2 应该是合理的值,并在那亨范围内。


12. CAFF2 和 LAAF2 的值应该合理;选择这两个参数来优化滤波器的中心频率。有时电路仿真器会使这些值过低或过高。为了使这些值更合理,只需使这些值与保持相同谐振频率的更好的标准值元件成比例即可。


13. 在千兆赫范围内设计时,尽可能使用 0201 封装样式,以便更大限度减少可能破坏滤波器特性形状或轮廓的二阶和三阶寄生效应。


某些情况下,滤波器设计程序可能会提供多个独特的解决方案,尤其是对于更高阶的滤波器。务必选择使用一组最合理元件值的解决方案。对于末端使用并联电容器的滤波器配置,还应考虑 ADC 的内部输入电容。您可能需要进行一次或两次迭代才能正确设置滤波器极点和最终带宽。


AAF 设计权衡

该接口电路中的参数具有很强的交互性;因此,几乎不可能在不进行权衡的情况下,针对主要规格(带宽、带宽平坦度、信噪比、SFDR 和增益)来优化电路。不过,您可以通过改变 RA 和/或 RKB 来更大程度地减小带宽峰值,这通常发生在带宽响应的尾端;其中任何一种方法都会对 AAF 带宽性能产生净正或净负影响。


请注意,在图 3 中,随着 FDA 输出串联电阻 (RA) 值的变化(蓝虚曲线),通带峰值是如何增强或变平的。随着该电阻值的减小,信号峰值增大,放大器可以驱动更少的信号来填充 ADC 的满标量程输入范围,但代价是通带平坦度响应接近 AAF 频率响应的边缘。

图 3. 通带平坦度性能与 RA 和 RKB 变化间的关系


RA 的值也会影响 SNR 性能。较小的值虽然能增强带宽峰值,但由于带宽增加和不必要的噪声,往往会降低信噪比。


此外,还必须在 ADC 输入端选择 RKB 串联电阻,以更大程度地减少由 ADC 内部的采样电容器注入的任何剩余电荷导致的失真。然而,增大此电阻还会提高或降低带宽峰值,具体取决于滤波器拓扑。


在优化 AAF 的滚降频率时,通过小幅改变 CAAF2,可以校正应用的理想频率覆盖范围。


通常,通过确定 ADC 输入端接电阻 RTADC 的值,可以使 ADC 净输入阻抗接近大多数放大器特征负载的典型值 (RL)。选择的 RTADC 值过高或过低都可能会对放大器的线性度产生不利影响,这种影响随后将反映在整个 SFDR 信号链阵容中。

AAF 设计示例

图 4 中所示的设计示例电路是一个宽带低通接收器前端,基于德州仪器 (TI) TRF1208 10MHz 至 11GHz3dB 带宽的单端转差分放大器TI ADC12DJ5200RF 射频 (RF) 采样 12 位双通道 5.2GSPS ADC。我们根据放大器和 ADC 的性能和接口要求优化了三阶巴特沃斯 AAF;滤波器网络和其他元件引起的总插入损耗小于 6dB。在这种交流耦合设计中,0.1µF 电容器可阻断放大器、其端接电阻器和 ADC 输入之间的共模电压。


图 4. FDA、AAF、ADC 宽带接收器前端设计(简化原理图)


10MHz 至 11GHz TRF1208 差分放大器接受单端输入,并将其转换为以 16dB 增益运行的差分信号,以补偿滤波器网络的插入损耗,从而提供 +7.8dB 的总体信号增益。


–6.8dBm 的输入信号在 ADC 输入端产生满量程 800mV 峰峰值差分信号。


整个电路的带宽为 2.34GHz,通带平坦度小于 3dB。使用 534MHz 模拟输入频率测量的 SNR 和 SFDR 分别为 52.5dBFS 和 71.4dBFS。采样频率为 5.2GSPS,从而创建一个覆盖 10MHz 至 2.5GHz 之间整个第一奈奎斯特区域的宽带低通滤波器。图 4 展示了为最终滤波器无源器件选择的值(根据实际电路寄生调整后)。


使用标准滤波器设计程序,AAF 设计为三阶巴特沃斯滤波器,差分源阻抗 (ZAAFS) 为 39Ω (2 ´ 18Ω + 3Ω),差分负载阻抗为 103Ω (ZAAFL),截止频率为 2.4GHz。由于仿真中需要更高的串联电感值,考虑到布局中固有的布线电感,我将这些电感器减少到 3nH,并将仿真中最初的 1.8pF 接地电容按比例增至 2.2pF,从而有助于在要求的 2.4GHz 附近保持适当的滚降。


在这种情况下,为了实现净性能,TRF1208 没有反向端接,净差分阻抗负载为 139Ω (ZAL)。采用 18Ω 串联电阻可将滤波电容与放大器输出隔离。


将 15Ω 电阻器与 ADC 输入串联安装可隔离滤波器和放大器的内部开关瞬态,并为 FDA 提供必需的特征负载。


根据数据表,我们使用了 ADC 的 100Ω 输入阻抗。


表 2 总结了系统的测量性能,其中网络的总插入损耗约为 5.8dB。


表 2. 电路的测量性能


图 5 展示了生成的 FDA、AAF 和 ADC 信号链的组合频率响应。

图 5. 通带平坦度性能与频率间的关系


图 6 分别展示了 SNR 和 SFDR 性能与频率间的关系。

图 6. SNR/SFDR性能与频率间的关系,采样速率 = 5.2GSPS

AAF 设计结论

设计 FDA 和射频 ADC 之间的 AAF 时,要了解其中涉及的所有不同因素、参数和权衡,这比看起来要复杂得多。在本文描述的设计示例中,每个参数的权重相同;因此,所选值代表了所有设计特性的接口性能。在某些设计中,您可以根据系统要求选择不同的值来优化 SFDR、SNR 或输入驱动电平。请记住所有这些必要的点,避免下一个 AAF 产生谐振。


持续关注我们的专栏,或通过“阅读原文”浏览德州仪器《模拟设计期刊》电子版,一同探索模拟设计的更多可能!



点击“阅读原文”,浏览《模拟设计期刊》电子版,更多相关知识等待解锁!

德州仪器 德州仪器(TI)是全球最大的半导体设计与制造公司之一。我们将在这里为您分享TI最新的动态和技术创新。
评论 (0)
  •   工业自动化领域电磁兼容与接地系统深度剖析   一、电磁兼容(EMC)基础认知   定义及关键意义   电磁兼容性(EMC),指的是设备或者系统在既定的电磁环境里,不但能按预期功能正常运转,而且不会对周边其他设备或系统造成难以承受的电磁干扰。在工业自动化不断发展的当下,大功率电机、变频器等设备被大量应用,现场总线、工业网络等技术也日益普及,致使工业自动化系统所处的电磁环境变得愈发复杂,电磁兼容(EMC)问题也越发严峻。   ​电磁兼容三大核心要素   屏蔽:屏蔽旨在切断电磁波的传播路
    北京华盛恒辉软件开发 2025-04-07 22:55 230浏览
  •   物质扩散与污染物监测系统:环境守护的关键拼图   一、物质扩散原理剖析   物质扩散,本质上是物质在浓度梯度、温度梯度或者压力梯度等驱动力的作用下,从高浓度区域向低浓度区域迁移的过程。在环境科学范畴,物质扩散作为污染物在大气、水体以及土壤中迁移的关键机制,对污染物的分布态势、浓度动态变化以及环境风险程度有着直接且重大的影响。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这些成功案例为物质
    华盛恒辉l58ll334744 2025-04-09 11:24 47浏览
  •   卫星图像智能测绘系统:地理空间数据处理的创新引擎   卫星图像智能测绘系统作为融合卫星遥感、地理信息系统(GIS)、人工智能(AI)以及大数据分析等前沿技术的综合性平台,致力于达成高精度、高效率的地理空间数据采集、处理与应用目标。借助自动化、智能化的技术路径,该系统为国土资源管理、城市规划、灾害监测、环境保护等诸多领域输送关键数据支撑。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉北京五木恒润卫星图像智能测绘系统。这些成功案例为卫星
    华盛恒辉l58ll334744 2025-04-08 16:19 77浏览
  • 文/郭楚妤编辑/cc孙聪颖‍伴随贸易全球化的持续深入,跨境电商迎来蓬勃发展期,物流行业 “出海” 成为不可阻挡的必然趋势。加之国内快递市场渐趋饱和,存量竞争愈发激烈。在此背景下,国内头部快递企业为突破发展瓶颈,寻求新的增长曲线,纷纷将战略目光投向海外市场。2024 年,堪称中国物流企业出海进程中的关键节点,众多企业纷纷扬帆起航,开启海外拓展之旅。然而,在一片向好的行业发展表象下,部分跨境物流企业的经营状况却不容乐观。它们受困于激烈的市场竞争、不断攀升的运营成本,以及复杂的国际物流环境,陷入了微利
    华尔街科技眼 2025-04-09 15:15 74浏览
  • 文/Leon编辑/侯煜‍就在小米SU7因高速交通事故、智驾性能受到质疑的时候,另一家中国领先的智驾解决方案供应商华为,低调地进行了一场重大人事变动。(详情见:雷军熬过黑夜,寄望小米SU7成为及时雨)4月4日上午,有网友发现余承东的职务发生了变化,华为官网、其个人微博认证信息为“常务董事,终端BG董事长”,不再包括“智能汽车解决方案BU董事长”。余承东的确不再兼任华为车BU董事长,但并非完全脱离华为的汽车业务,而是聚焦鸿蒙智行。据悉,华为方面寻求将车BU独立出去,但鸿蒙智行仍留在华为终端BG部门。
    华尔街科技眼 2025-04-09 15:28 68浏览
  • 在人工智能技术飞速发展的今天,语音交互正以颠覆性的方式重塑我们的生活体验。WTK6900系列语音识别芯片凭借其离线高性能、抗噪远场识别、毫秒级响应的核心优势,为智能家居领域注入全新活力。以智能风扇为起点,我们开启一场“解放双手”的科技革命,让每一缕凉风都随“声”而至。一、核心技术:精准识别,无惧环境挑战自适应降噪,听懂你的每一句话WTK6900系列芯片搭载前沿信号处理技术,通过自适应降噪算法,可智能过滤环境噪声干扰。无论是家中电视声、户外虫鸣声,还是厨房烹饪的嘈杂声,芯片均能精准提取有效指令,识
    广州唯创电子 2025-04-08 08:40 182浏览
  •     根据 IEC术语,瞬态过电压是指持续时间几个毫秒及以下的过高电压,通常是以高阻尼(快速衰减)形式出现,波形可以是振荡的,也可以是非振荡的。    瞬态过电压的成因和机理,IEC 60664-1给出了以下四种:    1. 自然放电,最典型的例子是雷击,感应到电力线路上,并通过电网配电系统传输,抵达用户端;        2. 电网中非特定感性负载通断。例如热处理工厂、机加工工厂对
    电子知识打边炉 2025-04-07 22:59 142浏览
  • 在万物互联时代,智能化安防需求持续升级,传统报警系统已难以满足实时性、可靠性与安全性并重的要求。WT2003H-16S低功耗语音芯片方案,以4G实时音频传输、超低功耗设计、端云加密交互为核心,重新定义智能报警设备的性能边界,为家庭、工业、公共安防等领域提供高效、稳定的安全守护。一、技术内核:五大核心突破,构建全场景安防基座1. 双模音频传输,灵活应对复杂场景实时音频流传输:内置高灵敏度MIC,支持环境音实时采集,通过4G模块直接上传至云端服务器,响应速度低至毫秒级,适用于火灾警报、紧急呼救等需即
    广州唯创电子 2025-04-08 08:59 143浏览
  •     在研究Corona现象时发现:临界电压与介电材料表面的清洁程度有关。表面越清洁的介电材料,临界电压越高;表面污染物越多的地方,越容易“爬电”。关于Corona现象,另见基础理论第007篇。    这里说的“污染物”,定义为——可能影响介电强度或表面电阻率的固体、液体或气体(电离气体)的任何情况。    IEC 60664-1 (对应GB/T 16935.1-2023) 定义了 Pollution Degree,中文术语是“污染等
    电子知识打边炉 2025-04-07 22:06 103浏览
  •   卫星图像智能测绘系统全面解析   一、系统概述   卫星图像智能测绘系统是基于卫星遥感技术、图像处理算法与人工智能(AI)技术的综合应用平台,旨在实现高精度、高效率的地理空间数据获取、处理与分析。该系统通过融合多源卫星数据(如光学、雷达、高光谱等),结合AI驱动的智能算法,实现自动化、智能化的测绘流程,广泛应用于城市规划、自然资源调查、灾害监测等领域。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星图像智能测绘系统
    华盛恒辉l58ll334744 2025-04-08 15:04 90浏览
  • HDMI从2.1版本开始采用FRL传输模式,和2.0及之前的版本不同。两者在物理层信号上有所区别,这就需要在一些2.1版本的电路设计上增加匹配电路,使得2.1版本的电路能够向下兼容2.0及之前版本。2.1版本的信号特性下面截取自2.1版本规范定义,可以看到2.1版本支持直流耦合和交流耦合,其共模电压和AVCC相关,信号摆幅在400mV-1200mV2.0及之前版本的信号特性HDMI2.0及之前版本采用TMDS信号物理层,其结构和参数如下:兼容设计根据以上规范定义,可以看出TMDS信号的共模电压范
    durid 2025-04-08 19:01 154浏览
  •   物质扩散与污染物监测系统软件:多领域环境守护的智能中枢   北京华盛恒辉物质扩散与污染物监测系统软件,作为一款融合了物质扩散模拟、污染物监测、数据分析以及可视化等多元功能的综合性工具,致力于为环境科学、公共安全、工业生产等诸多领域给予强有力的技术支撑。接下来,将从功能特性、应用场景、技术实现途径、未来发展趋势等多个维度对这类软件展开详尽介绍。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这
    华盛恒辉l58ll334744 2025-04-09 14:54 83浏览
  • ## DL/T645-2007* 帧格式:* 帧起始字符:68H* 地址域:A0 A1 A2 A3 A4 A5* 帧起始字符:68H* 控制码:1字节* 主站:* 13H:请求读电能表通信地址* 11H:请求读电能表数据* 1CH:请求跳闸、合闸* 从站:* 91H:正常应答读电能表* 9CH:正常应答跳闸、合闸* 数据域长度:1字节* 数据域:DI0 DI1 DI2 DI3* 发送方:每字节+33H* 接收方:每字节-33H* 数据标识:* 电能量* 最大需量及发生时间* 变量* 事件记录*
    四毛打印店 2025-04-09 10:53 49浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦