【技术支持案例】使用S32K144+NSD8381驱动电子膨胀阀

原创 AutoFAE进阶之路 2024-07-23 23:29

目录:

  • 1. 前言

  • 2. 问题描述

  • 3. 理论分析

    • 3.1 NSD8381如何连接电机

    • 3.2 S32K144和NSD8381的软件配置

  • 4.测试验证

    • 4.1 测试环境

    • 4.2 测试效果

    • 4.3 测试记录

1. 前言

最近有客户在使用S32K144+NSD8381驱动电子膨胀阀时,遇到无法正常驱动电子膨胀阀的情况。因为笔者也是刚开始使用NSD8381,无法线上支持这类实际应用问题,所以让客户提供了一个电子阀,自己搭建环境进行测试。

2. 问题描述

客户电子膨胀阀的阀针安装位置比较隐蔽,需要通过注水观察水的流动情况,判断阀门是否打开关闭。之前也给客户提供了NSD8381的驱动代码,以及相关的文档说明,如下所示,

  • 基于S32K144驱动NSD8381

但是客户反馈,按照文档的步骤配置NSD8381之后,无论给CTRL1引脚发送多少脉冲,阀门始终无法关闭,即注水都会流出。

3. 理论分析

关于S32K144+NSD8381无法驱动电机的场景,主要有两种可能,一个是NSD8381的寄存器配置有误,或者NSD8381和电机的接线有问题。

针对NSD8381配置有误的可能性,客户有测试更改过NSD8381的步进电机模式(1/16细分改为1/2),运行电流(576mA更改1.3A)等参数,现象仍然一致,并且读了SPI的返回值,最高字节为0x80,说明寄存器配置已经正确写入。

针对NSD8381和电机的连线,发现和NSD8381的时序不一致,详细情况如下描述。

3.1 NSD8381如何连接电机

客户的电子膨胀阀的运行时序如下左图,当前的NSD8381的输出引脚和电机的连线如下图。

NSD8381连接电机
  • 从横轴看左上图,1到8为阀门关闭的相序,8到1为阀门打开的相序;
  • 从纵轴看左上图,1,2,3,4分别为电机四根引线的输入电平要求;
  • 右上图显示NSD8381和电机的连线情况为:OUTA1、OUTA2连接电机的1、3号引线,OUTB1、OUTB2连接电机的2、4号引线。

按照上图的连线方式,对应的NSD8381输出引脚需要的相序如下表格最右列。

接线方法1线圈电流方向

翻看NSD8381数据手册,1/2微步模式下的芯片的相序如下:

NSD8381-1/2微步-相序

为了让电机相序和NSD8381的相序一致,需要NSD8381和电机的接线方式修改,修改后的接线方式为:

  • OUTB1、OUTB2连接电机的1、3号引线,OUTA1、OUTA2连接电机的2、4号引线

按如上描述修改接线方式后,对应的NSD8381输出引脚需要的相序如下表格,和NSD8381数据手册的相序描述相符合。

接线方法2线圈电流方向

另外,客户提供的电机参数表中,和驱动电路相关的参数如下红框所示:

电机参数

对应的驱动NSD8381配置为:

  • 供电电压为12系统;
  • 1/2微步模式下,CTRL1引脚的PWM频率在80-200Hz;
  • 1/2微步模式下,阀门从完全关闭到完全打开的PWM脉冲数为576,从完全关闭到打开阀门,需要38±15个PWM脉冲。

针对这些需求,需要基于前文《基于S32K144驱动NSD8381》分享的代码做一些修改。详细情况如下描述。

3.2 S32K144和NSD8381的软件配置

  1. 因为需要计算PWM的脉冲数,所以需要增加PWM计数功能。代码修改如下。
  • 增加FTM2通道5的中断使能;
 FTM_DRV_EnableInterrupts(INST_FLEXTIMER_PWM1, FTM_CHANNEL5_INT_ENABLE);
  • 增加对应的中断处理函数,在里面增加PWM计数功能;
volatile uint16_t PWM_Count = 0;

void FTM2_Ch4_Ch5_IRQHandler(void)
{
 PWM_Count++;
 FTM_DRV_ClearStatusFlags(INST_FLEXTIMER_PWM1,FTM_CHANNEL5_FLAG);
}
  1. 需要将PWM的频率修改为200Hz,修改下图形化配置即可。
PWM频率200Hz
  1. NSD8381的初始化函数中,需要修改步进电机模式为1/2微步,修改如下红框,即对CONFIG3寄存器赋值0x9B00。
NSD8381初始化
  1. 在while(1)循环中,增加如下功能:
  • 增加PWM计数处理逻辑,以及和PH[5:0]寄存器值的获取,用于判断NSD8381是否处于1/2微步模式,以及达到预定的PWM脉冲后,停止CTRL1引脚的脉冲输入。

  • 增加按键按下处理逻辑,按下SW2,将CTRL2引脚拉低(DIR为0),输入PWM波到CTRL1引脚;按下SW3,将CTRL2引脚拉高(DIR为1),输入PWM波到CTRL1引脚。

  • 如果希望电机整体功耗降低,可以增加Hold模式,当电机停止转动,开启Hold模式,此时消耗的电流远远小于RUN模式的电流。

对应的代码如下:

    while(1)
    {
          Phase_Count = NSD8381drv_GetPH();
          /* 励磁速度,80-200pps(每秒钟的脉冲数)
           * 开阀脉冲数38±15PS,全开脉冲576
           * */

          /* 测试步进电机模式是否正确配置,1/2微步的时候,PWM计数4,PH[5:0]计数0b100000,即32*/
          if(PWM_Count == 4)
          {
              printf("PWM Count is %d\r\n", PWM_Count);
              printf("Phase Count is %d\r\n", Phase_Count);
          }
          if(PWM_Count == 576)
          {
              NSD8381drv_HOLDM_En(ENABLE);
              FTM_DRV_DeinitPwm(INST_FLEXTIMER_PWM1);
              printf("PWM Count is %d\r\n", PWM_Count);
              printf("Phase Count is %d\r\n", Phase_Count);
              PWM_Count = 0;
          }

          /* SW2 press */
          if(SW2_Press_Flag)
          {
              SW2_Press_Flag = false;
              printf("SW2 press!\r\n");
              /* Increment phase counter, clockwise */
              NSD8381drv_CTRL2_Dir(clockwise);
              /* Hold mode -> Run mode */
              NSD8381drv_HOLDM_En(DISABLE);
              /* FTM2 CH5 use PWM mode,freq:200Hz */
              FTM_DRV_InitPwm(INST_FLEXTIMER_PWM1, &flexTimer_pwm1_PwmConfig);
          }

          /* SW3 press */
          if(SW3_Press_Flag)
          {
              SW3_Press_Flag = 0;
              printf("SW3 press!\r\n");
              /* decrement phase counter, counter-clockwise */
              NSD8381drv_CTRL2_Dir(counter_clockwise);
              /* Hold mode -> Run mode */
              NSD8381drv_HOLDM_En(DISABLE);
              /* FTM2 CH5 use PWM mode,freq:200Hz */
              FTM_DRV_InitPwm(INST_FLEXTIMER_PWM1, &flexTimer_pwm1_PwmConfig);
          }
    }

关于其中几个函数的实现,如下所示:

/* read phase counter */
uint32_t NSD8381drv_GetPH(void)
{
    uint32_t Rsult;
    CONFIG3Reg[0] = (uint8_t)(0x85U);
    Parity_check(CONFIG3Reg);
    SPI_Send(CONFIG3Reg, StatReg_Result);
    StatReg_Result[2] &= 0x7F;
    Result = (uint32_t)(StatReg_Result[2] >> 1);
    return Result;
}

/*set NSD8381 CONFIG_3 HOLD_EN bits*/
void NSD8381drv_HOLDM_En(FunctionalState_TypeDef EN)
{
    if(EN==ENABLE)
    {
        CONFIG3Reg[1]|=NSD8381_HOLDM;   //0x40
    }
    else
    {
        CONFIG3Reg[1]&=(uint8_t)(~NSD8381_HOLDM);
    }
    CONFIG3Reg[0] = (uint8_t)(0x05U);
    CONFIG3Reg[2]&=(uint8_t)(0xFE);
    Parity_check(CONFIG3Reg);
    SPI_Send(CONFIG3Reg, CtrlReg_Result);
}

/* set NSD8381 CTRL2 pin level when used for dir status
 * 0: Increment phase counter, clockwise
 * 1: decrement phase counter, counter-clockwise
 * */

void NSD8381drv_CTRL2_Dir(DirStatus_TypeDef EN)
{
    PINS_DRV_WritePin(NSD8381_CTRL2_PORT, NSD8381_CTRL2_PIN, EN);
}

4.测试验证

4.1 测试环境

整个测试的环境如下图:

NSD8381驱动电子膨胀阀

4.2 测试效果

实际的测试效果如下视频,

  • 当按下SW2时,阀门完全关闭,此时注入水不会流出;
  • 接着按下SW3,阀门完全打开,注入水会加速流出。

4.3 测试记录

实际测试时串口打印的数据如下图,

  • 第一个操作的寄存器的高8bit返回值为0x40,因为有reset事件;如果第一个操作的寄存器高8bit返回值为0x00,可能是NSD8381还没初始化完成,建议在EN引脚拉高后,延迟200us再发送SPI命令给NSD8381。
  • 当PWM计数为4时,对应的PH[5:0]为0x32,即0b100000,和相序表一致,说明处于1/2微步模式。
  • 使用250Hz的PWM波,也可以正常驱动该电磁阀,说明该电机兼容性比参数表更好。
  • 使用HOLD模式时的电流远小于RUN模式,有助于降低NSD8381的功耗。


评论 (0)
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 186浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 109浏览
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 181浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 149浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 146浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 151浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 201浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 182浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 82浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 109浏览
  • 在智能终端设备开发中,语音芯片与功放电路的配合直接影响音质表现。广州唯创电子的WTN6、WT588F等系列芯片虽功能强大,但若硬件设计不当,可能导致输出声音模糊、杂音明显。本文将以WTN6与WT588F系列为例,解析音质劣化的常见原因及解决方法,帮助开发者实现清晰纯净的语音输出。一、声音不清晰的典型表现与核心原因当语音芯片输出的音频信号存在以下问题时,需针对性排查:背景杂音:持续的“沙沙”声或高频啸叫,通常由信号干扰或滤波不足导致。语音失真:声音断断续续或含混不清,可能与信号幅度不匹配或功放参数
    广州唯创电子 2025-03-25 09:32 112浏览
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 89浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 148浏览
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 147浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦