因为树莓派新推的第二代MCU,工程师吵起来了

原创 电子工程世界 2024-08-13 07:01
▲ 点击上方蓝字关注我们,不错过任何一篇干货文章!
2021年,树莓派推出其首款售价仅为4美元的MCU——Raspberry Pi Pico,它基于RP2040构建。而后又推出添加英飞凌CYW43439无线芯片的6美元Raspberry Pi Pico W。

时隔三年,再看这个产品,谁也没想到这一产品能够大获欢迎,不仅本身可玩性强,还被实际用在工业中。但仔细想想,这个产品又有许多设计上的不足,包括片上存储、低功耗空闲和封装选项等,同时内核速度也不够快。

前两天,树莓派推出5美元的Raspberry Pi Pico 2。这一次,他们不仅升级了内核和功能,还加入了RISC-V,这引发了工程师大规模的讨论。其中,不乏一些吐槽。

付斌|作者

电子工程世界(ID:EEWorldbbs)|出品

 依然经济实惠的设计 

Pico 2延续了Pico一代“经济实惠”这一准则进行了大量升级。

相同点方面,两款产品均基于40nm工艺节点制造,通过专用 QSPI 总线支持高达 16MB 的片外闪存,支持DMA控制器,全连接AHB横杆,片上可编程LDO(用于产生内核电压),2个片上PLL(用于生成USB和内核时钟),30个GPIO引脚(其中 4 个可用作模拟输入),外设支持2个UART、2个SPI 控制器、2个I2C控制器、USB1.1控制器和PHY。

不同点方面,SRAM近乎翻倍,从264KB片上SRAM升级到520KB;板载4MB的外部Flash,相对Pico的2MHz扩充了一倍;PWM 通道从16个提升到24个;从8 PIO状态机提升为3个可编程IO(PIO) 模块,总共12个状态机。

RP2040

RP2350

核心架构

双 Arm Cortex-M0+

双Arm Cortex-M33、双RISC-V Hazard3或Arm Cortex-M33+RISC-V Hazard3

时钟速度

133MHz

150MHz

片上SRAM

264KB

520KB

板载闪存

2 MB QSPI

4 MB QSPI

GPIO

26

26(可支持4 x ADC)

USB

USB 1.1(Micro USB)

升级USB 1.1,支持主机和设备(Micro USB)

安全功能

基本安全功能

Arm TrustZone、签名启动、SHA-256、TRNG、故障检测器

外设接口

2×UART、2×SPI、2×I2C 、 ADC、PWM、USB 1.1

增强的外设、额外的PIO 状态机、更多的 GPIO 引脚、更高的电源效率


不止如此,这次树莓派还提供了更多的封装选项。我们都知道,Pico(RP2040)仅提供单个7×7mm QFN56封装选项,这次Pico 2(RP2350)提供四种不同选择:具有 30 个 GPIO 的7×7mm QFN60 封装 (RP2350A) 或具有48个GPIO的10×10mm QFN80封装 (RP2350B);以及每个型号都具有2MB的堆叠封装QSPI闪存(RP2354A 和 RP2354B)。

树莓派称,我们一如既往地坚持可负担的价格:尽管我们的硅芯片面积已经从RP2040的 2mm2增加到了5.3mm2,但RP2350A的价格仅比RP2040高10美分,3400个单元卷轴的价格为0.80美元,单单元数量为1.10美元。RP2350B将比RP2350A贵10美分,而RP2354变体将比他们的无Flash版本贵20美分。

在软件方面,推出了Pico SDK的更新版本,以及新的MicroPython和CircuitPython图像,与谷歌推出原生支持Pico 2的Pigweed SDK,此外未来还会支持Rust语言。
目前Pico 2已经开始在英国销售,价格为5美元。在日本,Switch Science和KSY计划在不久的将来开始销售。对于产能,树莓派表示,尽管目前渠道中的库存相对较少,但 Pico 2 正处于全速生产中,由合作伙伴Sony负责。此外,许多授权经销商都在运作预订和预留方案。

在年底之前,树莓派还将推出搭载与Pico W相同的Infineon 43439调制解调器的无线版 Pico 2 W,以及预安装0.1英寸排针的Pico 2和Pico 2 W版本。

 M33和RISC-V双核齐飞 


如果要找出Pico 2与Pico第一代最大的不同,就是内核。

第一代Pico基于双核配置Arm Cortex-M0+(133MHz)的RP2040,而这一次,树莓派RP2350提供了两种内核:一是150MHz的Arm Cortex-M33,一个是树莓派研发的150MHz Hazard 3 RISC-V内核。

从方便开展嵌入式教育的角度出发,树莓派基金会特别在RP2350中添加了两个 Cortex-M33和两个RISC-V核。在芯片的启动阶段,用户可以从4个核心中任选两个,由此产生了以下的组合:

  • 双核Cortex-M33;

  • 双核 RISC-V;

  • 一个Cortex-M33和一个RISC-V。

从内核角度来看,这次Pico 2的确是“史诗级”升级。

首先,Arm Cortex-M33是Cortex-M3和Cortex-M4的继任者,性能更强,具有DSP浮点运算功能,它基于ARMv8-M架构,而M++则基于Armv6-M,整整差了两代。

对比起来,M33采用了TrustZone技术,支持PSA Certified认证,也就是说Pico 2更安全了;同时DSP拓展可以为系统增加85个新指令,支持扩展浮点单元 (FPU) ,也就是说Pico 2的AI性能提升了,很多MCU跑小型的边缘AI都靠DSP和FPU。

从Datasheet中,我们也看到,Pico 2的M33内核配备了DSP、FPU、MPU(用于任务隔离的存储保护单元,8个SAU区域、8个安全MPU区域和8个非MPU区域),同时支持TrustZone安全性和安全启动(签名启动支持、8KB的片上反熔丝一次性可编程OTP内存、SHA-256加速、硬件真随机数生成器TRNG)。

其次,RISC-V内核Hazard3可大有来头,它由树莓派的天才ASIC工程师Luke Wren业余时间所设计。Hazard3完全是他自己设计,并授权给树莓派。

据了解,Luke在16岁时利用空闲时间开始设计基于7400系列逻辑的处理器,并受到RISC-V ISA的启发。Hazard3是Luke之前设计之一Hazard5的分支,专注于在小硅封装内实现MCU时钟频率的最佳性能。从Hazard5到Hazard3的第一个实例的开发过程,Luke只用了不到一周的时间。

Luke把该内核的设计在GitHub(https://github.com/Wren6991/Hazard3)上以Apache 2.0的形式提供任何人学习。未来的处理器设计人员可以查看Hazard3的未经编辑的提交历史记录,并从 Luke的开发过程中学习,包括他的错误以及他如何纠正这些错误。学习处理器设计的学生可以在RP2350上开发和测试软件工作负载,修改处理器以包含他们自己的自定义指令,然后在FPGA上测试新版本。

通过GitHub公开的数据显示,Hazard3在RP2350配置中,跑分达到了3.81 CoreMark/MHz,接近Cortex-M33在Arm Compiler 6.17下4.06的结果。

此外,Hazard3兼容RISC-V RVI20U32 Profile,包括M、A 和C可选扩展以及B、Zbc、Zbkb、Zicsr、Zcb和Zcmp非Profile扩展。这些RISC-V内核可以在启动时选择,并可以访问所有MCU外设。

大部分工程师对于这种设计还是比较认可的,觉得树莓派这次有点东西,毕竟Pico 2很便宜,这次性能升级够看,而且RISC-V内核的发布比较让人意外。

也有工程师感到疑惑,设计得有点怪异,毕竟一个装有四个内核的芯片,但你一次只能使用其中的两个。其中两个内核有一个 FPU、一个 DSP、一个 MPU,并支持 TrustZone 安全性和安全启动,另外 2 个内核仅用于整数,但可以在没有任何安全性的情况下访问所有芯片资源(AFAICS,不经过MPU,很像玄铁C910向量单元),很奇怪的设计。的确,当人们从Pico(RP2040)的两个M0+之一中比重一个HDMI信号时,他们本可以用RV32I做同样的事情。对他来说,仍然是一个奇怪而令人费解的设计。

工程师反驳了上面的观点,他们认为树莓派是为了尽量控制成本,毕竟升级之后涨价了1美元。价格上涨对某些人来说可能是一种耻辱,尽管提供了额外的处理魅力。

 非常注重安全的一代 


我们都知道,这一次Pico 2里面包含很多安全方面的升级。为了让它更安全,树莓派“定了个小目标”。不仅是与DEF CON黑客大会合作,甚至是直接贴出10000美元的悬赏,奖励第一个发现漏洞的人。(悬赏计划:https://github.com/raspberrypi/rp2350_hacking_challenge

根据树莓派的介绍,RP2350安全模型的基石是签名引导。如果启用了安全性,则只有使用私钥的二进制文件进行签名,且相应公钥的哈希值存储在 OTP 中的情况下,才能引导该二进制文件。防止攻击者运行任意代码大大增加了提取 OTP 内容(包括用于代码保护的加密密钥)的难度。

虽然RP2350使用多种技术,包括硬件快速故障检测器和我们正在申请专利的冗余协处理器,以保护控制流和数据完整性免受故障注入攻击,但他们想在启动过程中发现并修复缺陷。希望在RP2350部署到关键应用程序中之前尽早发现这些缺陷。

EEWorld论坛,工程师认为这一代产品之所以如此看中安全方面问题,估计是因为用到的M33核,这颗核心在之前出现过一些黑客事件。当然,相比来说,这颗芯片还是通用产品,只是增强了安全方面功能。

 被争论的USB 


在外网,工程师们争论的核心在于USB。他们认为,Pico 2使用之前相同的表面贴装micro-USB,这种USB总是从板上掉下来,或者数据引脚首先在背面分离。反观其它大多数MCU板(例如 esp32)都换成了USB-C,它在机械上更加坚固且可逆,有些则支持PD,以支持>5V的电源输出。

工程师们普遍认为,这是升级USB-C的好机会,毕竟这次推出了一个性能大升级的产品,没有换成USB-C很令人失望。

也有工程师猜测树莓派为什么一直使用使用micro-USB。一种可能性是为了保持兼容性,保持和上一代Pico一致,就像与Pi Zero 2 W保持其前身的硬件兼容性是一样的,有些OEM/工业客户可能依赖micro-USB连接器,设计师会想要“插头兼容性”。另一种可能性可能是会增加复杂度和产品的价格,毕竟想保持5美元还是挺难的。

除了没有换到USB-C,也有工程师对于USB 1.1有意见,他们需要主机设备延迟,而目前最多只能削减到1毫秒。他们发出疑问,USB 2.0是否存在技术或成本问题?拥有USB 2.0支持会让它变得史诗般美好。

有工程师解释,USB 2.0的芯片面积很大,需要为芯片边缘的物理体增加更多空间,因此硅领域的成本是很大的。此外,它还占用更多的 GPIO。所以说,虽然技术上可行(虽然需要大量的工作),但模具区域的成本令人望而却步。

 备受争议的ADC 


树莓派Pico(RP2040)是好产品吗?绝对是。但它为什么一直处在一个“不上不下”的地位,或许是因为ADC有一定问题,甚至被工程师称为“缺陷”。

去年,就有工程师发帖称“使用Pico有缺陷的ADC会收到多少错误”,他表示,RP2040中的ADC无法满足最初预期的性能,实际在使用时误差幅度很大,而且引脚在某些电压上误差幅度更高。

工程师曾经发帖分享,通过MicroPython编写的程序,测量ADC的差分非线性,即当信号扫过该范围时,是否存在缺失或接近缺失代码。最后发现,存在4个奇怪的峰值。同时,由于电容器充电和放电时波形的指数性质,直方图的两端高于中间,仔细检查输出文件会发现许多其他异常。

对于这个问题,有的工程师用软件简单修复了一些,似乎也能恢复正常,但很明显这种情况应用到工业中是存在问题的。

一个工程师就表示,曾考虑将RP2040芯片用在一个项目中,但“缺乏”ADC是一个杀手,因此我们最终换成了STM32。

在Pico 2(RP2350)发布以后,很多工程师第一时间就去Datasheet中寻找ADC修复相关的信息。他们在最新的RP2350的Datasheet中发现,RP2040-E11 所述,消除了代码 0x200、0x600、0xa00 和0xe00的差分非线性尖峰,将ADC的精度提高了约0.5 ENOB。将外部ADC输入通道的数量从4个增加到8个通道,仅在QFN-80封装中(海报说明:例如仅限 RP2350B)。

对用户来说,是个好消息,不过具体实际情况,还需要进一步测量。不过,至少树莓派意识到了这个问题,也在抓紧修复。

参考文献

[1] 树莓派官网:https://www.raspberrypi.com/news/raspberry-pi-pico-2-our-new-5-microcontroller-board-on-sale-now/ 

[2] 树莓派技术手册:https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf?_gl=1*qge7dd*_ga*MTQ1NTEyNzczLjE3MjM0MzAwNDQ.*_ga_22FD70LWDS*MTcyMzQ0MjQ1NC4yLjEuMTcyMzQ0MjQ4NC4wLjAuMA..

[3] RISC-V基金会:https://riscv.org/news/2024/08/raspberry-pi-launch-new-rp2350-microcontroller-and-pico-2-development-board-with-risc-v-support/

[4] 树莓派论坛:https://forums.raspberrypi.com/viewtopic.php?t=299904

[5] The Register:https://www.theregister.com/2024/08/08/pi_pico_2_risc_v/



· END ·





欢迎将我们设为“星标”,这样才能第一时间收到推送消息。
扫码关注:汽车开发圈,回复“驾驶

领取自动驾驶、辅助驾驶等方面免费资料包!



扫码添加小助手回复“进群”

和电子工程师们面对面交流经验



电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 118浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 65浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 502浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 200浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 105浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 184浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 470浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 68浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 156浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 123浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 189浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 76浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦