IO模拟SPI操作SD卡系列之一:初始化过程

原创 嵌入式Lee 2024-08-11 15:32

.前言

本文分享IO模拟SPI操作SD卡系列之一:初始化过程,IO模拟SPI我们前面有分享且分享了一系列应用,参见

https://mp.weixin.qq.com/s/dA2QgUEezVY3EkVUK7MD7A

SD卡协议主要参考文件《SD Specifications Part 1 Physical Layer Specification Version 3.01 February 18, 2010 》的第七章7. SPI Mode

二.初始化过程

2.1 SPI接口基本约定

使用MODE3CLK空闲为高,第二个边沿(上升沿)开始采样。

MSB即高位在前,多字节时高字节在前。

2.2初始化过程

初始化过程参考规格书7.2.1如下示意,因为现在基本都是V2版本的卡,我们暂时只考虑V2版本即右边这部分,今后有需要再完善左边部分。

2.2.1 模式选择

上电默认SDSD模式,如果CS拉低发送CMD0则进入SPI模式。

这里顺便提一下SDSPI模式引脚的对应关系

DAT3   CS

CMD   DI

CLK    CLK

DAT0   DO

2.2.2上电

CS拉低发送CMD之前0, 需要拉高CS发送一系列CLK来完成上电过程,发送的CLK数实测和具体的卡有关,有些卡发送8CLK即可,一般是发送大于74CLK,我们按照8个为单位发送80个。

如下所示

2.2.3 CMD0复位进入空闲

命令由6字节组成,起始位为0然后是一位1表示主机发送到设备,然后是6位命令索引,比如CMD0即索引为0,然后是32位参数,高字节在前高位在前。然后是7CRC7,最后一位停止位1.

更详细的时序如下,主机拉低CS,在NCS后发送命令,在NCR之后卡回响应,CMD0的响应是R1,然后NEC后主机可以拉高CS

其中NCS等参数如下NCSNEC可以为0.NCR可以为1~8个字节,所以这里实现需要注意下,在等待响应时最多要设置等待8个字节,而不应该固定为一个字节。

设备响应R1R的内容如下,所以如果CMD0响应OK,设备应该回0x01

具体的波形如下

6字节命令如下

40 00 00 00 00 95

设备在以1个字节(最多可能8字节)之后回了0x01

2.2.4 CMD8发送接口条件

CMD8,发送主机支持的电压信息,设备回R7含设备支持的电压信息。

发送命令参数

[11:8]VHS,其参数含义如下,所以我们需要设置为0001b

[7:0]check pattern,发多少设备收到后就回多少,我们一般设置为0xAA.

所以命令参数内容为0x000001AA

卡回R7的内容如下,显示回r1,然后是32位的值,command version0

保留位为0voltage accepted对应前面设置的VHS,正常设置为0001b接受就回0001b

Check pattern即前面的0xAA

波形如下

发送命令

48 00 00 01 AA 87

一个字节后回

01 00 00 01 AA

2.2.5 CMD55-ACMD41激活卡

ACMD41用于发送容量支持信息,激活卡的初始化序列。激活进行中r10x01,否则回0x00

参数的bit20HCS设置为1表示主机支持大容量。这里需要注意要设置,否则大容量设备始终回0x01

由于是A开头的命令,在该命令前需要发送CMD55

波形如下,激活过程中

CMD55的波形

发送命令

77 00 00 00 00 65

r1

01

软件不断重复,直到卡回00

2.2.5 CMD58OCR

主机发送CMD58OCR寄存器值,命令参数为0

卡回R3,即先是r1,此时r1继续保持0x00OCR的内容如下

波形如下

主机发

7A 00 00 00 00 FD

卡在一个字节后回

R1=0x00

然后是4字节OCR

C0 FF 80 00

bit31=1表示power up是完成的

Bit30=1 表示CCS=1,即SDXC

Bit15~bit23都为1,对应的电压阈都支持。

2.2.9 CMD9CSD获取容量信息

CSD寄存器获取容量信息,命令参数为0,设备回r1+CSD数据块,此时r1应该继续保持0x00.

CSD内容如下, 版本1和版本2内容不一样,计算容量方式也不一样

波形如下

主机发送命令

49 00 00 00 00 AF

卡在1个字节后回r1=0x00

然后继续回16字节的CSD内容

注意SPI内容是按照数据块返回的,所以实际是开始包+CSD+CRC16

0xFE + CSD + CRC16

FE 40 0E 00 32 53 59 00 00 1D E1 7F 80 0A 40 00 13 76 F5

三. 代码实现

我们还是按照面向对象思想,考虑可移植性设计。其中crc7.c/h用于实现命令的crc7计算,完全可移植无需修改。

Io_spi.c/hio模拟spi实现完全无需修改,

Sd.c/hsd卡操作实现完全无需修改,

Sd_itf.c/h是接口实现,仅需要实现io操作接口即可。

io_spi.c

#include "io_spi.h"
void io_spi_enable(io_spi_dev_st* dev){ if((dev != 0) && (dev->cs_write != 0) && (dev->sck_write != 0)) { /* 准备空闲时的SCK状态,在CS拉低之前准备好 */ dev->sck_write((dev->mode & 0x02) >> 1); if(dev->delay_pf != 0) { dev->delay_pf(dev->delayns); } /* 拉低CS */ dev->cs_write(0); /* (5) SCK电平保持 */ //if(dev->delay_pf != 0) //{ // dev->delay_pf(dev->delayns); //} }}
void io_spi_disable(io_spi_dev_st* dev){ if((dev != 0) && (dev->cs_write != 0)) { dev->cs_write(1); }}
/** * _____ _____ * CS |_____________________________________________________________| * _____________ _________ * SCK(CPOL=0) xx__________| |___ xxx __________| |__________ * __________ ____xxx __________ __________ * SCK(CPOL=1) xx |_____________| |_________| * (0) * (1) * (2) * (3)(4) * (5) * (6)(7) * MISO ^ ^ * MOSI ^ * (1) (2) (4) (6) * (3) (5) * 其中()表示行为,^表示MOSI/MISO的输出或者采样位置. * (0) io_spi_enable 准备SCK空闲状态,拉低CS. * (1) 准备SCK初始状态,和(0)时SCK初始状态一样,代码中执行这个操作的目的仅仅是初始化局部变量cpol而已. * (2) 输出MOSI数据. * (3) 反转SCK产生第1个边沿. * (4) 如果CPHA=0 则第1个边沿采样,MISO在此采样. * (5) SCK高/低电平保持时间. * (6) 反转SCK产生第2个边沿. * (7) 如果CPHA=1 则第2个边沿采样,MISO在此采样. */int io_spi_trans(io_spi_dev_st* dev, uint8_t* tx, uint8_t* rx, uint32_t size){ uint32_t i = 0; /* 字节数循环 */ uint8_t j = 0; /* 位数循环 */ uint8_t msb = 0; /* MSB标志 */ uint8_t cpha = 0; /* 相位标志bit0 */ uint8_t cpol = 0; /* 极性标志bit1 */ uint8_t rx_val = 0; /* 发送字节缓存 */ uint8_t tx_val = 0; /* 接收字节缓存 */ if(dev == 0) { return -1; } if((dev->miso_read == 0) || (dev->mosi_write == 0) || (dev->sck_write == 0)) { /* dev->delay_pf 可以不实现 */ return -1; } cpha = dev->mode & 0x01; msb = dev->msb; /* (1) 准备空闲时的SCK状态 */ cpol = (dev->mode & 0x02) >> 1; /* 这一句其实可以不用,和io_spi_enable效果一样,这里仅需要初始化cpol局部变量即可 * 加上这一句可以在此确保SCK引脚状态初始化,可靠性角度来说加上提高冗余. */ dev->sck_write(cpol);
for(i=0; i { /* 取待发送的值, 用户没有提供则发送0xFF */ if(tx != 0) { tx_val = *tx++; } else { tx_val = 0xFF; } /* 接收到的值初始化 */ rx_val = 0;
for(j=0 ;j<8; j++) { /* (2)对于发送,不管对方哪个边沿采样,都是都在第一个边沿之前准备好MOSI就行 * 如果对于对方第一个边沿采样,这里修改MOSI之后最好有个数据建立时间 */ if(msb) { dev->mosi_write(tx_val & 0x80); /* 高位在前,先发送高位,未发送数据再往高位移动 */ tx_val <<= 0x1; /* 注意写的时候是先写后移位 */ } else { dev->mosi_write(tx_val & 0x01); /* 低位在前,先发送低位,未发送数据再往高位移动 */ tx_val >>= 0x1; }
/* (3)反转产生第1个CLK边沿 */ cpol ^= 0x01; dev->sck_write(cpol); if(rx != 0) { if(cpha == 0) { /* (4)第一个边沿采样 */ if(msb) { rx_val <<= 0x1; /* 注意读的时候是先移位后读 */ rx_val |= dev->miso_read(); /* 高位在前,先读到低位,已接收数据再往高位移动 */ } else { rx_val >>= 0x1; rx_val |= dev->miso_read() <<7; /* 低位在前,先读到高位,已接收数据再往低位移动 */ } } } /* (5) SCK电平保持 */ if(dev->delay_pf != 0) { dev->delay_pf(dev->delayns); }
/* (6)反转产生第2个CLK边沿 */ cpol ^= 0x01; dev->sck_write(cpol); if(rx != 0) { if(cpha == 1) { /* (7) 第2个边沿采样 */ if(msb) { rx_val <<= 0x1; rx_val |= dev->miso_read(); /* 高位在前,先读到低位再往高位移动 */ } else { rx_val >>= 0x1; rx_val |= dev->miso_read()<<7; /* 低位在前,先读到高位再往低位移动 */ } } } /* (5) SCK电平保持 */ if(dev->delay_pf != 0) { dev->delay_pf(dev->delayns); } } /* 存储读到的值 */ if(rx != 0) { *rx++ = rx_val; } } return 0;}
void io_spi_init(io_spi_dev_st* dev){ if((dev != 0) && (dev->init != 0)) { dev->init(); }}
void io_spi_deinit(io_spi_dev_st* dev){ if((dev != 0) && (dev->deinit != 0)) { dev->deinit(); }}

io_spi.h

#ifndef IO_SPI_H#define IO_SPI_H
#ifdef __cplusplus extern "C"{#endif
#include
typedef void (*io_spi_cs_write_pf)(uint8_t val); /**< CS写接口 */typedef void (*io_spi_sck_write_pf)(uint8_t val); /**< SCK写接口 */typedef void (*io_spi_mosi_write_pf)(uint8_t val); /**< MOSI写接口 */typedef uint8_t (*io_spi_miso_read_pf)(void); /**< MISO读接口 */typedef void (*io_spi_delay_ns_pf)(uint32_t delay); /**< 延时接口 */typedef void (*io_spi_init_pf)(void); /**< 初始化接口 */typedef void (*io_spi_deinit_pf)(void); /**< 解除初始化接口 */
/** * \struct io_spi_dev_st * 接口结构体*/typedef struct{ io_spi_cs_write_pf cs_write; /**< cs写接口 */ io_spi_sck_write_pf sck_write; /**< sck写接口 */ io_spi_mosi_write_pf mosi_write; /**< mosi写接口 */ io_spi_miso_read_pf miso_read; /**< miso读接口 */ io_spi_delay_ns_pf delay_pf; /**< 延时接口 */ io_spi_init_pf init; /**< 初始化接口 */ io_spi_deinit_pf deinit; /**< 解除初始化接口 */ uint32_t delayns; /**< 延迟时间 */ uint8_t mode; /**< 模式0~3 bit0 CPHA bit1 CPOL */ uint8_t msb; /**< 1高位在前 否则低位在前 */} io_spi_dev_st;
/** * \fn io_spi_enable * 发送CS使能信号,拉低CS * \param[in] dev \ref io_spi_dev_st*/void io_spi_enable(io_spi_dev_st* dev);
/** * \fn io_spi_disable * 拉高CS,取消片选 * \param[in] dev \ref io_spi_dev_st*/void io_spi_disable(io_spi_dev_st* dev);
/** * \fn io_spi_trans * 传输,发送的同时读 * \param[in] dev \ref io_spi_dev_st * \param[in] tx 待发送的数据 如果tx为空则默认发送FF * \param[out] rx 存储接收的数据 如果rx为空则不读 * \param[in] size 传输的字节数 * \retval 0 读成功 * \retval -1 参数错误*/int io_spi_trans(io_spi_dev_st* dev, uint8_t* tx, uint8_t* rx, uint32_t size);
/** * \fn io_spi_init * 初始化 * \param[in] dev \ref io_spi_dev_st*/void io_spi_init(io_spi_dev_st* dev);
/** * \fn io_spi_deinit * 解除初始化 * \param[in] dev \ref io_spi_dev_st*/void io_spi_deinit(io_spi_dev_st* dev);
#ifdef __cplusplus }#endif
#endif

crc7.c

#include #include 
#define CRC7_GENTBL 0#define CRC7_TEST 0
#if CRC7_GENTBLstatic uint8_t s_crc_table[256];
void crc7_gen_tbl(uint8_t* tbl){ int i, j; uint8_t crcpoly = 0x89; /* the value of our CRC-7 polynomial */ /* generate a table value for all 256 possible byte values */ for (i = 0; i < 256; ++i) { tbl[i] = (i & 0x80) ? i ^ crcpoly : i; for (j = 1; j < 8; ++j) { tbl[i] <<= 1; if (tbl[i] & 0x80) { tbl[i] ^= crcpoly; } } if(i%16==0) { printf("\r\n"); } printf("0x%02x,",tbl[i]); } printf("\r\n");}
#elsestatic const uint8_t s_crc_table[256]={ 0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77, 0x19,0x10,0x0b,0x02,0x3d,0x34,0x2f,0x26,0x51,0x58,0x43,0x4a,0x75,0x7c,0x67,0x6e, 0x32,0x3b,0x20,0x29,0x16,0x1f,0x04,0x0d,0x7a,0x73,0x68,0x61,0x5e,0x57,0x4c,0x45, 0x2b,0x22,0x39,0x30,0x0f,0x06,0x1d,0x14,0x63,0x6a,0x71,0x78,0x47,0x4e,0x55,0x5c, 0x64,0x6d,0x76,0x7f,0x40,0x49,0x52,0x5b,0x2c,0x25,0x3e,0x37,0x08,0x01,0x1a,0x13, 0x7d,0x74,0x6f,0x66,0x59,0x50,0x4b,0x42,0x35,0x3c,0x27,0x2e,0x11,0x18,0x03,0x0a, 0x56,0x5f,0x44,0x4d,0x72,0x7b,0x60,0x69,0x1e,0x17,0x0c,0x05,0x3a,0x33,0x28,0x21, 0x4f,0x46,0x5d,0x54,0x6b,0x62,0x79,0x70,0x07,0x0e,0x15,0x1c,0x23,0x2a,0x31,0x38, 0x41,0x48,0x53,0x5a,0x65,0x6c,0x77,0x7e,0x09,0x00,0x1b,0x12,0x2d,0x24,0x3f,0x36, 0x58,0x51,0x4a,0x43,0x7c,0x75,0x6e,0x67,0x10,0x19,0x02,0x0b,0x34,0x3d,0x26,0x2f, 0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04, 0x6a,0x63,0x78,0x71,0x4e,0x47,0x5c,0x55,0x22,0x2b,0x30,0x39,0x06,0x0f,0x14,0x1d, 0x25,0x2c,0x37,0x3e,0x01,0x08,0x13,0x1a,0x6d,0x64,0x7f,0x76,0x49,0x40,0x5b,0x52, 0x3c,0x35,0x2e,0x27,0x18,0x11,0x0a,0x03,0x74,0x7d,0x66,0x6f,0x50,0x59,0x42,0x4b, 0x17,0x1e,0x05,0x0c,0x33,0x3a,0x21,0x28,0x5f,0x56,0x4d,0x44,0x7b,0x72,0x69,0x60, 0x0e,0x07,0x1c,0x15,0x2a,0x23,0x38,0x31,0x46,0x4f,0x54,0x5d,0x62,0x6b,0x70,0x79,};#endif uint8_t crc7(uint8_t* buffer, uint32_t length){ int i; uint8_t crc = 0; for (i = 0; i < length; ++i) { crc = s_crc_table[(crc << 1) ^ buffer[i]]; } return crc;}
#if CRC7_TEST/** * CMD0 (Argument=0) --> 01 000000 00000000000000000000000000000000 "1001010" 1 * CMD17 (Argument=0) --> 01 010001 00000000000000000000000000000000 "0101010" 1 * Response of CMD17 --> 00 010001 00000000000000000000100100000000 "0110011" 1 */static uint8_t test_input[3][5] = { {0x40,0x00,0x00,0x00,0x00}, {0x51,0x00,0x00,0x00,0x00}, {0x11,0x00,0x00,0x09,0x00},};
static uint8_t test_output[3] = {0x4A,0x2A,0x33};int main(void){ #if CRC7_GENTBL crc7_gen_tbl(s_crc_table); #endif
for(int i=0; i<3; i++) { uint8_t crc = crc7(test_input[i],5); if(crc != test_output[i]) { printf("crc err: cal:%x src:%x\r\n",crc,test_output[i]); } }}#endif

crc7.h


#ifndef CRC7_H#define CRC7_H
#ifdef __cplusplus extern "C"{#endif
#include
uint8_t crc7(uint8_t* buffer, uint32_t length);
#ifdef __cplusplus }#endif
#endif

sd.c

#include "crc7.h"#include "sd.h"
/** * @fn sd_set_command * 填充48位(6字节)的命令 * 位域 47 46 [45:40] [39:8] [7:1] 0 * 位宽 1 1 6 32 7 1 * 值 0 1 x x x 1 * 含义 起始位 传输方向位 命令索引 命令参数 CRC7 停止位 * @param[in] buffer 命令缓存 * @param[in] command_index 6位命令索引 * @param[in] argument 32位参数 */static void sd_set_command(uint8_t* buffer, uint8_t command_index, uint32_t argument){ if(buffer == (uint8_t*)0) { return; } buffer[0] = 0x40 | (command_index & 0x3F); buffer[1] = (argument>>24)&0xFF; buffer[2] = (argument>>16)&0xFF; buffer[3] = (argument>>8)&0xFF; buffer[4] = argument&0xFF; buffer[5] = (crc7(buffer, 5)<<1) | 0x01;}

static uint8_t sd_read_r1(sd_dev_st* dev){ uint8_t i=0; uint8_t tmp = 0xFF; uint8_t r1; do { dev->transfer(&tmp,&r1,1); i++; if(i > 8) { break; } } while(r1 == 0xFF); return r1;}
static int sd_read_r3r7(sd_dev_st* dev, uint8_t* r3r7){ r3r7[0] = sd_read_r1(dev); if(r3r7[0] > 1) { return -1; } dev->transfer(0,&(r3r7[1]),4); return 0;}
static int sd_read_ocr(sd_dev_st* dev, uint8_t* ocr){ uint8_t tmp = 0xFF; int res = 0; uint8_t cmd_buffer[6]; if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(0); if(dev->en_extclk) { dev->transfer(&tmp,0,1); } sd_set_command(cmd_buffer, 58, 0); dev->transfer(cmd_buffer,0,6);
if(0 != sd_read_r3r7(dev, ocr)) { res = -1; } if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(1); if(dev->en_extclk) { dev->transfer(&tmp,0,1); } return res;}
static uint8_t sd_go_idle_state(sd_dev_st* dev){ uint8_t tmp = 0xFF; uint8_t r1; uint8_t cmd_buffer[6]; if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(0); if(dev->en_extclk) { dev->transfer(&tmp,0,1); } sd_set_command(cmd_buffer, 0, 0); dev->transfer(cmd_buffer,0,6); r1 = sd_read_r1(dev); if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(1); if(dev->en_extclk) { dev->transfer(&tmp,0,1); } return r1;}
static uint8_t sd_send_app(sd_dev_st* dev){ uint8_t tmp = 0xFF; uint8_t r1; uint8_t cmd_buffer[6]; if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(0); if(dev->en_extclk) { dev->transfer(&tmp,0,1); }
sd_set_command(cmd_buffer, 55, 0); dev->transfer(cmd_buffer,0,6);
r1 = sd_read_r1(dev);
if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(1); if(dev->en_extclk) { dev->transfer(&tmp,0,1); }
return r1;}
static uint8_t sd_send_op_cond(sd_dev_st* dev){ uint8_t tmp = 0xFF; uint8_t r1; uint8_t cmd_buffer[6]; if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(0); if(dev->en_extclk) { dev->transfer(&tmp,0,1); }
sd_set_command(cmd_buffer, 41, 1u<<30); dev->transfer(cmd_buffer,0,6);
r1 = sd_read_r1(dev);
if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(1); if(dev->en_extclk) { dev->transfer(&tmp,0,1); }
return r1;}

static int sd_send_if_cond(sd_dev_st* dev){ uint8_t tmp = 0xFF; uint8_t r7[5]; uint8_t cmd_buffer[6]; int res = 0;
if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(0); if(dev->en_extclk) { dev->transfer(&tmp,0,1); }
sd_set_command(cmd_buffer, 8, 0x1AA); dev->transfer(cmd_buffer,0,6);
if(0 == sd_read_r3r7(dev, r7)) { if((r7[0] != 0x01) || (r7[4] != 0xAA)) { res = -2; } } else { res = -1; } if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(1); if(dev->en_extclk) { dev->transfer(&tmp,0,1); } return res;}
static int sd_read_csd(sd_dev_st* dev, uint8_t* buffer){ uint8_t tmp = 0xff; uint8_t r1; uint8_t token; uint8_t crc[2]; uint8_t cmd_buffer[6]; int res = -1; int timeout; if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(0); if(dev->en_extclk) { dev->transfer(&tmp,0,1); }
sd_set_command(cmd_buffer, 9, 0); dev->transfer(cmd_buffer,0,6); /* 6字节命令 */
r1 = sd_read_r1(dev); if(r1 != 0xFF) { timeout = 100; token = 0xFF; do { dev->transfer(0,&token,1); if(token == 0xFF) { dev->delayms(1); } } while(((timeout--) > 0) && (token == 0xFF));
if(token == 0xFE) { dev->transfer(0,buffer,16); dev->transfer(0,crc,2); res = 0; } }
if(dev->en_extclk) { dev->transfer(&tmp,0,1); } dev->setcs(1); if(dev->en_extclk) { dev->transfer(&tmp,0,1); } return res;}
int sd_init(sd_dev_st* dev){ uint8_t r1; uint8_t tmp = 0xFF; uint8_t ocr[5]; if(dev == (sd_dev_st*)0) { return -1; } if(dev->init != 0) { dev->init(); }
dev->setcs(1); dev->delayms(1); for(int i=0; i<10; i++) { dev->transfer(&tmp,0,1); /* 不同卡需要的CLK数不一样,所以发10*8个 */ }
int res; int retry = 10; do { r1 = sd_go_idle_state(dev); } while(((retry --) >0) && (r1 != 0x01)); if(r1 != 0x01) { return -2; }
if(0 != sd_send_if_cond(dev)) { return -3; }
retry = 10; do { r1 = sd_send_app(dev); if(r1 < 2) { r1 = sd_send_op_cond(dev); } if(r1 != 0) { dev->delayms(100); } } while((r1 != 0) && ((retry--)>0)); if(r1 != 0) { return -4; }
res = sd_read_ocr(dev,ocr); if(res != 0) { return -5; }
if((ocr[1] & 0x80) == 0) { return -6; } dev->ccs = ((ocr[1] & 0x40) != 0) ? 1 : 0;
if(0 != sd_read_csd(dev,dev->csd)) { return -7; }
uint64_t c_size; if(dev->ccs == 0) { uint32_t c_size_mult; uint32_t read_bl_len; c_size = (uint32_t)((dev->csd[8]>>6)*0x03) | ((uint32_t)(dev->csd[7])<<2) | ((uint32_t)(dev->csd[6] & 0x03)<<10); c_size_mult = ((dev->csd[10]>>7)&0x01) | ((dev->csd[9] & 0x03)<<1); read_bl_len = (dev->csd[5])&0x0F; c_size = ((c_size+1)<<(read_bl_len))<<(c_size_mult+2); } else { c_size = (uint32_t)(dev->csd[9]) | ((uint32_t)(dev->csd[8])<<8) | ((uint32_t)(dev->csd[7] & 0x3F)<<16); c_size = (c_size+1) * (uint64_t)512*1024; } dev->cap = c_size; return 0;}
int sd_deinit(sd_dev_st* dev){ if(dev == (sd_dev_st*)0) { return -1; } if(dev->deinit != 0) { return dev->deinit(); } return 0;}

sd.h


#ifndef SD_H#define SD_H
#ifdef __cplusplus extern "C"{#endif
#include
typedef int (*sd_port_init_pf)(void); /**< 初始化接口 */typedef int (*sd_port_deinit_pf)(void); /**< 解除初始化接口 */typedef int (*sd_port_transfer_pf)(uint8_t* out, uint8_t* in, uint32_t len); /**< 传输一笔数据 */typedef int (*sd_port_setcs_pf)(uint8_t cs); /**< CS控制 */typedef int (*sd_port_delayms_pf)(uint32_t ms); /**< ms延时 */
/** * \struct sd_dev_st * 设备接口结构体*/typedef struct{ sd_port_init_pf init; /**< 需要用户实现的初始化接口 */ sd_port_deinit_pf deinit; /**< 需要用户实现的解除初始化接口 */ sd_port_transfer_pf transfer; /**< 需要用户实现的发送-接收一笔数据 */ sd_port_setcs_pf setcs; /**< 需要用户实现的CS控制 */ sd_port_delayms_pf delayms; /**< 需要用户实现的ms延时 */ uint8_t ccs; /**< ACMD41响应(R3 OCR的bit30) CCS=0表示SDSC卡,CCS=1表示SDHC或SDXC卡, 初始化时更新 */ uint8_t en_extclk; /**< 是否在CS拉低前后,拉高前后额外产生8个CLK */ uint8_t csd[16]; /**< 初始化时获取到的CSD寄存器值 */ uint64_t cap; /**< 初始化时获取到的容量值,单位字节 */} sd_dev_st;
/** * @fn sd_init * 初始化SD * @param[in] dev @ref sd_dev_st 指向设备 * @return 0:成功 其他值:失败 */int sd_init(sd_dev_st* dev);
/** * @fn sd_deinit * 解除初始化SD * @param[in] dev @ref sd_dev_st 指向设备 * @return 0:成功 其他值:失败 */int sd_deinit(sd_dev_st* dev);

sd_itf.h


#ifndef SD_ITF_H#define SD_ITF_H
#ifdef __cplusplus extern "C"{#endif
#include
int sd_itf_init(void);
#ifdef __cplusplus }#endif
#endif

sd_itf.c

#include "sd.h"#include "sd_itf.h"#include "os_utils.h"#include 
#define TF_IO_MODE 0 /**<0使用IO模拟SPI 1使用硬件SPI 2使用SDIO */
/** * 引脚定义 */#define TF_PWR_PIN GPIO_A02#define TF_DAT2_PIN GPIO_04#define TF_DAT3_PIN GPIO_05 /* CS */#define TF_CMD_PIN GPIO_06 /* DI */#define TF_CLK_PIN GPIO_00 /* CLK */#define TF_DAT0_PIN GPIO_07 /* DO */#define TF_DAT1_PIN GPIO_03#define TF_CD_PIN GPIO_A03

/** * IO模拟SPI接口 */#if TF_IO_MODE == 0#include "io_spi.h"
static void port_io_spi_cs_write(uint8_t val){ gpio_write(TF_DAT3_PIN,val);}
static void port_io_spi_sck_write(uint8_t val){ gpio_write(TF_CLK_PIN,val);}
static void port_io_spi_mosi_write(uint8_t val){ gpio_write(TF_CMD_PIN,val);}
static uint8_t port_io_spi_miso_read(void){ return gpio_read(TF_DAT0_PIN);}
static void port_io_spi_init(void){ gpio_open(TF_PWR_PIN, GPIO_DIRECTION_OUTPUT); gpio_set_pull_mode(TF_PWR_PIN, GPIO_PULL_UP); gpio_write(TF_PWR_PIN,0);
gpio_open(TF_DAT3_PIN, GPIO_DIRECTION_OUTPUT); gpio_set_pull_mode(TF_DAT3_PIN, GPIO_PULL_UP); gpio_write(TF_DAT3_PIN,1);

gpio_open(TF_CLK_PIN, GPIO_DIRECTION_OUTPUT); gpio_set_pull_mode(TF_CLK_PIN, GPIO_PULL_UP); gpio_write(TF_CLK_PIN,1);
gpio_open(TF_CMD_PIN, GPIO_DIRECTION_OUTPUT); gpio_set_pull_mode(TF_CMD_PIN, GPIO_PULL_UP); gpio_write(TF_CMD_PIN,1);
gpio_open(TF_DAT0_PIN, GPIO_DIRECTION_INPUT); gpio_set_pull_mode(TF_DAT0_PIN, GPIO_PULL_UP);}
static void port_io_spi_deinit(void){ gpio_close(TF_PWR_PIN); gpio_close(TF_DAT3_PIN); gpio_close(TF_CLK_PIN); gpio_close(TF_CMD_PIN); gpio_close(TF_DAT0_PIN); }
/* IO模拟SPI设备实例 */static io_spi_dev_st s_io_spi_dev ={ .cs_write = port_io_spi_cs_write, .sck_write = port_io_spi_sck_write, .mosi_write = port_io_spi_mosi_write, .miso_read = port_io_spi_miso_read, .delay_pf = 0, .init = port_io_spi_init, .deinit = port_io_spi_deinit, .delayns = 1, .mode = 3, .msb = 1,};
static int port_sd_init(void){ io_spi_init(&s_io_spi_dev); return 0;}
static int port_sd_deinit(void){ io_spi_deinit(&s_io_spi_dev); return 0;}
static int port_sd_transfer(uint8_t* out, uint8_t* in, uint32_t len){ //io_spi_enable(&s_io_spi_dev); io_spi_trans(&s_io_spi_dev,out,in,len); //io_spi_disable(&s_io_spi_dev); return 0;}
static int port_sd_setcs(uint8_t cs){ if(cs) { io_spi_disable(&s_io_spi_dev); } else { io_spi_enable(&s_io_spi_dev); } return 0;}
static int port_sd_delayms(uint32_t ms){ os_delay(ms); return 0;}
static sd_dev_st s_sd_dev = { .init = port_sd_init, .deinit = port_sd_deinit, .transfer = port_sd_transfer, .setcs = port_sd_setcs, .delayms = port_sd_delayms, .en_extclk = 0,};
#endif

int sd_itf_init(void){ static uint8_t s_read_buffer[2][512]; /* CD插入检测 */ gpio_open(TF_CD_PIN, GPIO_DIRECTION_INPUT); gpio_set_pull_mode(TF_CD_PIN,GPIO_PULL_UP);
os_delay(10); if(0 == sd_init(&s_sd_dev)) { }
return 0;}

四. 测试

调用sd_init(&s_sd_dev)查看是否正确初始化完成,使用逻辑分析仪抓取波形看是否正确。

这里分享一份波形,使用DsView软件打开。

通过百度网盘分享的文件:IO模拟读写TF.dsl

链接:https://pan.baidu.com/s/14CjyG3xgOBSZ2p4cmTRSxA?pwd=nm7n

提取码:nm7n

五. 总结

注意上电CS拉高之前需要发送CLK

r1可能是1~8个字节之后,不要固定为1个字节

ACMD41之前要发CMD55表示后面命令的类型,注意参数bit30要设置为1.




















评论
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 144浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 223浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 108浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 70浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 61浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 117浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 66浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 204浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 124浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦