什么是PID控制?

TsinghuaJoking 2024-08-08 08:24

一、前言

  在智能车竞赛中,有很多环节需要通过软件进行对车模运动进行精确控制。比如,车模与引导线之间的位置,就需要进行精确控制,放置车模走失。车模通过摄像头检测到黑色引导线在视野中的位置,距离设定的视野中心点之间,具有一定偏差。这个偏差可以通过车模两个前轮之间的速度差来进行修正,也可以通过修改后轮的左右旋转来进行修正。因此这里就会引入一个重要的控制思路,那就是反馈控制。也就是利用偏差来修正车模的运动参数进而减少偏差。今天给大家介绍的一个最经典的反馈控制方法,那就是 PID 反馈控制。通过理解它,便于大家理解给定的参考例程软件,并进一步优化。

二、反馈调节

  以车模与引导线之间的偏差调节为例,说明PID反馈控制的概念。这里的车模,就是我们控制的对象系统。它有输入和输出信号。对于位置控制来说,两个前轮的速度差,就是车模位置的输入信号。 引导线在车模摄像头视野中心的偏差,就是系统的输出信号。为了确保车模始终沿着引导线前行,通常设定这个偏差为 0。利用比较图像中测量到的偏差与设定值之间的差别,通过某种算法来修正两个前轮的差速,进而使得偏差恢复到与设定值相同。也就是无偏差。PID 就是一种常见到的调节方法。

  为了说明负反馈调节的概念,这里先举一个乒乓控制的策略。如果发现车模偏差大于0,表示靠左,则提高车模左轮的转速,降低右轮的转速,使得差速为大于0的一个常数,车模便会往右转向。当车模往右转向使得偏差小于0,表示偏向右方了。则将差速设定为小于 0 的 一个常数。此时车模便会往左旋转,进而减小偏差。这个乒乓控制策略比较简单,但是最大的一个问题,就是车模在行进的过程中会左右摇摆,严重影响行进的速度。那么,是否可以改变控制策略能够使得这个过程变得平滑,并且最终误差趋于 0 吗?这就需要引入经典的 PID控制。

三、PID控制

  关于PID 控制的说明,在网络上有很多资料,大家可以通过网络自行学习, 这里给出他的一些基本概念。PID实际上是比例、积分、和微分的英文首字母的缩写词, 它表示,对系统的反馈误差信号,分别通过比例放大、 积分、以及微分运算之后,然后在通过一个加权系数将它们合并在一起,形成车模转向的控制量,进而去消除误差。

  相比与乒乓控制,通过将误差乘以一个比例系数作为控制量,可以避免车模左右剧烈摇摆。将误差进行积分,可以有效消除残存的车模偏移。微分则可以有效抑制调节的过冲,它是牺牲一部分快速响应来获得稳定的效果。对于车模方向控制,由于方向本身就是对差速的积分,所以,通过左右轮进行差速控制的时候,常常只需使用比例和微分就可以了。不需要再引入积分,否则就有可能使得方向控制产生剧烈的过冲。

四、效果演示

  为了更加直观的展示 PID 控制规律,这里通过 CSDN 上的一个博文中的动图来说明 PID 各个参数的作用。在这个直立的木板上,最左边的旋钮是一个设定位置的电位器,紧接着右边也是一个电位器,它的位置是由上面电机的输出轴带动。反应了电机的输出轴的角度。电机的旋转电压是通过对比设定电位器与检测电位器之间的电压差值经过 PID 调节来决定的。右边三个电位器分别可成设定 PID 的三个加权系数的大小。由于控制电机的电压决定了电机的转速,对应的位置是对转速的积分,这一点与智能车的两个前轮的差速,经过积分之后,转变成方向的偏差是一样的。现在只是进行 比例调节,可以看到电机的角度跟随设定旋钮的变化,效果是非常良好的。

▲ 图1.4.1 加入微分,可以消除震荡


  接下来,增加了积分部分,此时,明显可以看到电机的输出角度跟随设定电位器的速度增加,但也出现了明显的震荡。这是因为误差的积分,再叠加上电机角度对转速的积分,使得反馈出现了过冲。如果此时,增加 微分系数,可以看到它降低了电机角度跟随设定电位器的速度,但是明显抑制了震荡现象,提高了控制的稳定性。这一点,对于车模方向控制也是非常重要的。

  结 ※

  文结合智能车方向控制,介绍了 PID 控制的基本概念,这个调节概念也可以应用于速度、位置等其它运动量的控制。利用动图演示了 PID 三个参数在具有积分特性的控制对象上所产生的效果。基于此,大家可以进一步优化智能车控制程序。

参考资料
[1]

清华大学自动化系科技营暨清华大学自动化系智能机器人挑战赛 三轮智能车比赛实施方案: https://zhuoqing.blog.csdn.net/article/details/140818295

[2]

清华大学自动化系科技营-暨智能机器人挑战赛-学习方略: https://blog.csdn.net/zhuoqingjoking97298/article/details/140378536?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22140378536%22%2C%22source%22%3A%22zhuoqingjoking97298%22%7D

[3]

通过位置跟踪模型显示PID三个参数作用: https://blog.csdn.net/zhuoqingjoking97298/article/details/109441605


TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 469浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 319浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 165浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 436浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 462浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 447浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 97浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 487浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 455浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 496浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦