小科普丨什么是JESD204标准?为什么我们要重视它?

贸泽电子设计圈 2020-12-03 00:00

一种新的转换器接口的使用率正在稳步上升,并且有望成为未来转换器的协议标准。这种新接口就是JESD204,它诞生于2006年,其作为转换器接口经过几次版本更新后越来越受瞩目,效率也更高。

随着转换器分辨率和速度的提高,对于效率更高的接口的需求也随之增长。JESD204接口可提供这种高效率,较之其前代互补金属氧化物半导体(CMOS)和低压差分信号(LVDS)产品,JESD204在速度、尺寸和成本方面更有优势。采用JESD204的设计拥有更快的接口带来的优势,能与转换器更快的采样速率同步。此外,引脚数的减少导致封装尺寸更小,走线布线数也更少,从而极大地简化电路板设计,降低整体系统成本。该标准可以方便地调整,从而满足未来需求,这从它已经历的两个版本的变化中即可看出。自从2006年发布以来,JESD204标准经过两次更新,目前版本为B。由于该标准已为更多的转换器供应商、用户以及FPGA制造商所采纳,它被细分并增加了新特性,提高了效率和实施的便利性。此标准既适用于模数转换器(ADC),也适用于数模转换器(DAC),初步打算作为FPGA的通用接口(也可能用于ASIC)。



JESD204——它是什么?

2006年4月,JESD204最初版本发布。该版本描述了转换器和接收器(通常是FPGA或ASIC)之间数Gb的串行数据链路。在JESD204的最初版本中,串行数据链路被定义为一个或多个转换器和接收器之间的单串行通道。图1给出了图形说明。图中的通道代表M转换器和接收器之间的物理接口,该接口由采用电流模式逻辑(CML)驱动器和接收器的差分对组成。所示链路是转换器和接收器之间的串行数据链路。帧时钟同时路由至转换器和接收器,并为器件间的JESD204链路提供时钟

图1:JESD204最初标准
通道数据速率定义为312.5Mbps与3.125Gbps之间,源阻抗与负载阻抗定义为100Ω ±20%。差分电平定义为标称800mV峰峰值、共模电平范围从0.72 V至1.23 V。该链路利用8b/10b编码,采用嵌入式时钟,这样便无需路由额外的时钟线路,也无需考虑相关的高数据速率下传输的数据与额外的时钟信号对齐的复杂性。当JESD204标准开始越来越受欢迎时,人们开始意识到该标准需要修订以支持多个转换器下的多路、对齐的串行通道,以满足转换器日益增长的速度和分辨率。

这种认识促成了JESD204第一个修订版的发布,即JESD204A。此修订版增加了支持多个转换器下的多路对齐串行通道的能力。该版本所支持的通道数据速率依然为312.5Mbps至3.125 Gbps,另外还保留了帧时钟和电气接口规范。增加了对多路对齐串行通道的支持,可让高采样速率和高分辨率的转换器达到3.125Gbps的最高支持数据速率。图2以图形表示JESD204A版本中增加的功能,即支持多通道。


图2:第一个修订版——JESD204A
虽然最初的JESD204标准和修订后的JESD204A标准在性能上都比老的接口标准要高,它们依然缺少一个关键因素。这一缺少的因素就是链路上串行数据的确定延迟。对于转换器,当接收到信号时,若要正确重建模拟域采样信号,则关键是了解采样信号和其数字表示之间的时序关系(虽然这种情况是针对ADC而言,但DAC的情况类似)。该时序关系受转换器的延迟影响。对于ADC,它定义为输入信号采样边沿的时刻直至转换器输出数字这段时间内的时钟周期数。类似地,对于DAC,延迟定义为数字信号输入DAC的时刻直至模拟输出开始变化这段时间内的时钟周期数。JESD204及JESD204A标准中没有定义可以确定性地设置转换器延迟和串行数字输入/输出的功能。另外,转换器的速度和分辨率也不断提升。这些因素催生了该标准的第二个修订版本——JESD204B。

2011年7月,标准的第二个修订版发布,称为JESD204B,即当前版本。修订后的标准中,其中一个重要方面就是加入了实现确定延迟的内容。此外,支持的数据速率也提升到12.5Gbps,并划分器件的不同速度等级。此修订版标准使用器件时钟作为主要时钟源,而不是像之前版本那样以帧时钟作为主时钟源。图3表示JESD204B版本中的新增功能。


图3:第二个(当前)修订版——JESD204B
在之前的JESD204标准的两个版本中,没有确保通过接口的确定延迟相关的内容。JESD204B修订版纠正了这个问题。通过提供一种机制,确保两个上电周期之间以及链路重新同步期间,延迟是可重现并且是确定性的。其工作机制之一是:在明确定义的时刻使用SYNC~输入信号,同时初始化所有通道中转换器最初的通道对齐序列。另一种机制是使用SYSREF信号——一种JESD204B定义的新信号。SYSREF信号作为主时序参考,通过每个发射器和接收器的器件时钟以及本地多帧时钟对齐所有内部分频器。这有助于确保通过系统的延迟具有确定性。JESD204B规范定义了三种器件子类: 子类0——不支持确定性延迟类1——使用SYSREF的确定性延迟子类2——使用SYNC~的确定性延迟 。子类0就类似于JESD204A链路;子类1最初针对工作在500MSPS或以上的转换器;而子类2最初针对工作在500MSPS以下的转换器。
除了确定延迟,JESD204B支持的通道数据速率上升到12.5Gbps,并将器件划分为三个不同的速度等级:所有三个速度等级的源阻抗和负载阻抗相同,均定义为100Ω ±20%。第一速度等级与JESD204和JESD204A标准定义的通道数据速率相同,即通道数据电气接口最高为3.125 Gbps。JESD204B的第二速度等级定义了通道数据速率最高为6.375Gbps的电气接口。该速度等级将第一速度等级的最低差分电平从500mV峰峰值降为400mV峰峰值。JESD204B的第三速度等级定义了通道数据速率最高为12.5Gbps的电气接口。该速度等级电气接口要求的最低差分电平降低至360mV峰峰值。随着不同速度等级的通道数据速率的上升,通过降低所需驱动器的压摆率,使得所需最低差分电平也随之降低,以便物理实施更为简便。

为提供更多的灵活性,JESD204B版本采用器件时钟而非帧时钟。在之前的JESD204和JESD204A版本中,帧时钟是JESD204系统的绝对时间参照。帧时钟和转换器采样时钟通常是相同的。这样就没有足够的灵活性,而且要将此同样的信号路由给多个器件,并考虑不同路由路径之间的偏斜时,就会无谓增加系统设计的复杂性。JESD204B中,采用器件时钟作为JESD204系统每个元件的时间参照。每个转换器和接收器都获得时钟发生器电路产生的器件时钟,该发生器电路负责从同一个源产生所有器件时钟。这使得系统设计更加灵活,但是需要为给定器件指定帧时钟和器件时钟之间的关系。



JESD204——为什么我们要重视它?

就像几年前LVDS开始取代CMOS成为转换器数字接口技术的首选,JESD204有望在未来数年内以类似的方式发展。虽然CMOS技术目前还在使用中,但已基本被LVDS所取代。转换器的速度和分辨率以及对更低功耗的要求最终使得CMOS和LVDS将不再适合转换器。随着CMOS输出的数据速率提高,瞬态电流也会增大,导致更高的功耗。虽然LVDS的电流和功耗依然相对较为平坦,但接口可支持的最高速度受到了限制。

这是由于驱动器架构以及众多数据线路都必须全部与某个数据时钟同步所导致的。图4显示一个双通道14位ADC的CMOS、LVDS和CML输出的不同功耗要求。


图4:CMOS、LVDS和CML驱动器功耗比较
在大约150MSP至200MSPS和14位分辨率时,就功耗而言,CML输出驱动器的效率开始占优。CML的优点是:因为数据的串行化,所以对于给定的分辨率,它需要的输出对数少于LVDS和CMOS驱动器。JESD204B接口规范所说明的CML驱动器还有一个额外的优势,因为当采样速率提高并提升输出线路速率时,该规范要求降低峰峰值电压水平。
同样,针对给定的转换器分辨率和采样率,所需的引脚数目也大为减少。 表1 显示采用200MSPS转换器的三种不同接口各自的引脚数目,转换器具有各种通道数和位分辨率。在CMOS和LVDS输出中,假定时钟对于各个通道数据同步;使用CML输出时,JESD204B数据传输的最大数据速率为4.0Gbps。从该表中可以发现,使用CML驱动器的JESD204B优势十分明显,引脚数大为减少。

表1:引脚数比较——200MSPS ADC
业界知名的数据转换器供应商ADI预见到了推动转换器数字接口向JESD204(由JEDEC定义)发展的趋势。ADI自从初版JESD204规范发布之时起即参与该标准的定义。迄今为止,ADI公司已发布多款输出兼容JESD204和JESD204A的转换器,目前正在开发输出兼容JESD204B的产品。AD9639是一款四通道、12位、170MSPS/210MSPS ADC,集成JESD204接口。AD9644和AD9641是14位、80MSPS/155MSPS、双通道/单通道ADC,集成JESD204A接口。DAC方面,最近发布的AD9128是一款双通道、16位、1.25GSPS DAC,集成JESD204A接口。

随着转换器速度和分辨率的提高,对于效率更高的数字接口的需求也随之增长。随着JESD204串行数据接口的发明,业界开始意识到了这点。接口规范依然在不断发展中,以提供更优秀、更快速的方法将数据在转换器和FPGA(或ASIC)之间传输。接口经过两个版本的改进和实施,以适应对更高速度和分辨率转换器不断增长的需求。展望转换器数字接口的发展趋势,显然JESD204有望成为数字接口至转换器的业界标准。每个修订版都满足了对于改进其实施的要求,并允许标准演进以适应转换器技术的改变及由此带来的新需求。随着系统设计越来越复杂,以及对转换器性能要求的提高,JESD204标准应该可以进一步调整和演进,满足新设计的需要。


本文转载自:亚德诺半导体

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


关于贸泽

贸泽电子设计圈由贸泽电子(Mouser Electronics)开发和运营,服务全球广大电子设计群体。贸泽电子原厂授权分销超过1,100家知名品牌,可订购500多万种在线产品,为客户提供一站式采购平台,欢迎关注我们,获取第一手的设计与产业资讯信息!


贸泽电子设计圈 贸泽电子(Mouser Electronics )为全球授权半导体和电子元器件授权分销商,分销750多家领先品牌,可订购500多万种在线产品,为设计工程师和采购人员提供一站式采购平台。
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 91浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 80浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 84浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 93浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 90浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 99浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 88浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 110浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 77浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 112浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦