推挽放大电路工作原理+电路图

硬件笔记本 2024-08-01 07:41

点击上方名片关注了解更多


今天给大家分享的是:推挽放大电路、推挽放大电路工作原理A类放大电路、B类放大电路、AB类放大电路、如何降低推挽放大电路的交叉失真。

一、推挽放大电路

推挽晶体管电路是一种电子电路,使用以特定方式连接的有源器件,可以在需要时交替提供电路并从连接的负载吸收电流,用于向负载提供大功率,也被称为推挽放大器。
推挽放大器由2个晶体管组成,其中一个是NPN型,另外一个PNP型一个晶体管在正半周期推动输出,另一个在负半周期拉动输出,因此被称为推挽放大器。
推挽放大器电路的主要优点是当没有信号时,输出晶体管没有功耗。推挽放大电路有多种类型,但通常将B类放大器视为推挽放大器。

推挽放大电路

二、A类放大器

A类配置是最常见的功率放大器配置,仅由一个设置为始终保持导通状态的开关晶体管组成,产生最小的失真最大幅度的输出信号。A类放大器的效率很低,接近30%。即使没有连接输入信号,A 类放大器的级也允许相同数量的负载电流流过它,因此输出晶体管需要大散热器。A类放大器的电路图如下:

A类放大器

三、B类放大器

B类放大器是实际的推挽放大器。B 类放大器的效率高于 A 类放大器,因为它由两个晶体管 NPN 和 PNP 组成。B 类放大器电路以这样一种方式偏置,即每个晶体管将在输入波形的一个半周期内工作。因此,这类放大电路的导通角为180度。一个晶体管在正半周期推动输出,而另一个在负半周期拉动输出,这就是它被称为推挽放大器的原因。B类放大器的电路图如下:

B类放大器
交叉失真
B 类通常会受到称为交叉失真的影响,其中信号在 0V 时失真。我们知道,晶体管需要在其基极 - 发射极结处提供 0.7v 的电压才能将其打开。因此,当交流输入电压施加到推挽放大器时,它从 0 开始增加,直到达到 0.7v,晶体管保持关断状态,我们没有得到任何输出。PNP 晶体管在交流波的负半周也会发生同样的事情,这被称为死区。为了克服这个问题,二极管用于偏置,然后放大器被称为 AB 类放大器。

四、AB类放大器

交叉失真缺陷可以通过使用两个在晶体管位置导通的二极管来校正。修改后的电路现在称为 AB 类放大器电路
该AB类放大器是利用A类和B类放大器电路的特性制成的电路。从 0V 到 0.7V,二极管偏置在导通状态,此时晶体管在基极没有信号。这解决了交叉失真问题。

AB类放大器

五、推挽放大电路工作原理

推挽放大电路
推挽放大电路由两个晶体管Q1和Q2组成,分别为NPN和PNP。当输入信号为正时,Q1 开始导通并在输出端产生正输入的复制品。此时Q2仍处于关断状态。
在这里,在这种情况下
V输出= V输入– V BE1
类似地,当输入信号为负时,Q1 关闭,Q2 开始导通并在输出端产生负输入的复制品。
在这种情况下:
V OUT = V IN + V BE2
现在,为什么当 VIN达到零时会发生交越失真?下面为推挽放大器电路的粗略特性图和输出波形

推挽放大器电路的粗略特性图和输出波形。
晶体管 Q1 和 Q2 不能同时导通,要使 Q1 导通,我们要求 V IN必须大于 Vout,对于 Q2,Vin 必须小于 Vout。如果 V IN等于零,则 Vout 也必须等于零。
现在,当 V IN从零开始增加时,输出电压 Vout 将保持为零,直到 V IN小于 V BE1(约为 0.7v),其中 V BE是导通 NPN 晶体管 Q1 所需的电压。因此,在 V IN小于 V BE或 0.7v期间,输出电压呈现死区。当 V IN从零开始下降时也会发生同样的事情,PNP 晶体管 Q2 不会导通,直到 V IN大于 V BE2 (~0.7v),其中 V BE2是导通晶体管 Q2 所需的电压。

六、如何降低推挽晶体管电路的交叉失真

不管是为扬声器还是伺服放大电路供电,推挽输出级(B类)是一个很好的选择。主要优点就是当没有信号存在时,输出晶体管中没有功耗。缺点就是信号子0V附近失真。下面来看看使用一些简单的技术可以降低多少失真。

推挽输出级
该电路被称为互补对称推挽输出级。
  • 有一个 NPN 和一个 PNP 设备。
  • NPN 和 PNP 电路看起来一样。
  • 该级既可以提供电流也可以吸收电流。因为电路实际上只是几个射极跟随器驱动同一个负载,所以操作简单;Q1 进行正摆动;Q2 进行负摆动。
在仿真中,将 10 kHz 的 5V 峰值正弦波应用于输入。绘制输入 V(1) 和输出 V(2) 电压。“正弦波”输出——输出级是简单的射极跟随器。打开晶体管大约需要 0.7 V。这意味着在输入达到 +0.7 V 之前,Q1 的发射极不会开始正向移动。同样,在输入低于 -0.7 V 之前,Q2 的发射极不会向负移动。实际上,+/-0.7 V 之间的任何输入信号都有进入“死区”,使输出停留在 0V。另一个不良影响是输出低于 5V 峰值约 0.7 V。
1、失真程度怎么样?
仿真提供了一种方便的方法来确定输出信号的总谐波失真 (THD)。通过包含命令四个 10KHZ V(2),使用 10kHz 作为基频计算电压 V(2) 的傅里叶级数
如果信号是没有失真的纯正弦波,则傅里叶级数将在基本 10kHz 处显示一个大分量 V1,没有任何分量,V2、V3、V4...,谐波频率为 20kHz、30kHz、40kHz... .. 另一方面,失真波在谐波处显示出重要的成分。THD 很容易计算为:

总谐波失真
2、二极管偏置
这里需要一种方法来弥补射极跟随器的 0.7 V 损失。这里就要想:哪个组件的导通电压接近 VBE 压降?答案是PN结二极管,下面显示了两个二极管清理死区的示意图。

两个二极管清理死区
这是解决失真问题的简单而有效的方法。二极管 D1 为输入信号增加了大约 0.7 V,与 NPN 发射极跟随器 Q11 的下降量大致相同,为 -0.7 V。最终效果是 VD1 和 VBE 相互抵消,保持(大约)输入电平。二极管 D2 对 Q12 的作用相同,只是极性相反。
RB1 控制 D1 的电流,电流越大(RB1 越小)意味着二极管电压越大,因此在无输入信号时 Vbe 越大。这种增加的偏差应该会进一步减少失真。但是,注意不要让 RB1 太小。由此产生的更高的二极管电流和更高的二极管电压开始正向偏置 Q1,导致集电极电流流动,即使没有输入信号也是如此。此时,晶体管已进入 AB 类偏置。只要您考虑到 Q1 中的额外功耗,这可能没问题。(偏置过多的另一个危险是晶体管在升温时进入热失控状态。)
在另一个极端,降低 RB1 可能会限制最大输出摆幅。RB1 有两个功能:
  • 将基极电流输送到 Q11
  • 将偏置电流输送到 D1
你可以通过 IRB1 = (VPOS - VB11) / RB1 计算通过 RB1 的电流,从这个公式你可以知道 IRB1 会随着 VB11 的增加而变小。到达一个点,IRB1 不足以同时为 D1 和 Q11 供电。随着输入增加,二极管 D1 最终关断,使输出在剩余的电压峰值期间保持平坦。
3、用 RB1 来尝试进一步降低 THD
将 RB1 从 10k 降低到 1k 这样的值,重新运行模拟。THD 有没有下降?另一方面,如果追求的是低功耗,则增加 RB1 以降低输出级中的偏置电流。但是,在输出在峰值附近变平之前,用不依赖于 VB11 的电流源替换 RB1,或者选择具有更高 Beta 的晶体管。)
4、反馈回路中的输出级
反馈可以帮助解决漂移和非线性电路等问题。这里对清理失真正弦波的任务进行测试。
下面是一个推挽级,包含在一个简单的单位增益运算放大器电路的反馈回路中。

简单的单位增益运算放大器电路的反馈回路
这里移除了二极管偏压,让反馈环路对电路起到作用。
这里运行仿真并绘制带有反馈的输入V(21) 和输出电压 V(22)。查看运算放大器的输出 V,运算放大器的输出补偿了射极跟随器的 0.7 V 压降。然后对输出执行傅里叶分析,THD 现在应该被压低到 0.1% 以下。

总结
如果要降低推挽放大电路的交叉失真,有以下方法:
1、像前面的电路一样添加二极管偏置
2、通过添加两个反馈电阻来为该级增加一些增益;一个从 RL3 到运算放大器的负输入,另一个从负输入到地。增益与运算放大器同相放大器的增益相同。只要确保降低输入电压,就不会过度驱动输出级。

声明:


声明:文章来源头条李工谈元器件本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。
投稿/招聘/推广/宣传 请加微信:woniu26a

推荐阅读

  • 电路设计-电路分析

  • EMC相关文章

  • 电子元器件

后台回复“加群,管理员拉你加入同行技术交流群。


硬件笔记本 一点一滴,厚积薄发。
评论 (0)
  •   军事领域仿真推演系统的战略价值与发展前瞻   北京华盛恒辉仿真推演系统通过技术创新与应用拓展,已成为作战效能提升的核心支撑。以下从战略应用与未来趋势展开解析:   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、核心战略应用   1. 作战理论创新引擎   依托低成本仿真平台,军事人员可高效验证新型作战概念。   2. 装备全周期优化   覆盖武器
    华盛恒辉l58ll334744 2025-05-14 16:41 74浏览
  •   舰艇电磁兼容分析与整改系统平台解析   北京华盛恒辉舰艇电磁兼容分析与整改系统平台是保障海军装备作战效能的关键技术,旨在确保舰艇电子设备在复杂电磁环境中协同运行。本文从架构、技术、流程、价值及趋势五个维度展开解析。   应用案例   目前,已有多个舰艇电磁兼容分析与整改系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润舰艇电磁兼容分析与整改系统。这些成功案例为舰艇电磁兼容分析与整改系统的推广和应用提供了有力支持。   一、系统架构:模块化智能体系   电磁环境建模:基
    华盛恒辉l58ll334744 2025-05-14 11:22 74浏览
  •   军事仿真推演系统平台核心解析   北京华盛恒辉军事仿真推演系统平台以计算机仿真技术为基石,在功能、架构、应用及效能上展现显著优势,成为提升军事作战与决策能力的核心工具。   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、全流程功能体系   精准推演控制:覆盖推演启动至结束全流程。   智能想定管理:集成作战信息配置、兵力部署功能。   数据模型整合
    华盛恒辉l58ll334744 2025-05-14 17:11 62浏览
  • 感谢面包板论坛组织的本次测评活动,本次测评的对象是STM32WL Nucleo-64板 (NUCLEO-WL55JC) ,该测试板专为LoRa™应用原型构建,基于STM32WL系列sub-GHz无线微控制器。其性能、功耗及特性组合经过精心挑选,支持通过Arduino® Uno V3连接,并利用ST morpho接头扩展STM32WL Nucleo功能,便于访问多种专用屏蔽。STM32WL Nucleo-64板集成STLINK-V3E调试器与编程器,无需额外探测器。该板配备全面的STM
    无言的朝圣 2025-05-13 09:47 187浏览
  •   电磁数据展示系统平台解析   北京华盛恒辉电磁数据展示系统平台是实现电磁数据高效展示、分析与管理的综合性软件体系,以下从核心功能、技术特性、应用场景及发展趋势展开解读:   应用案例   目前,已有多个电磁数据展示系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据展示系统。这些成功案例为电磁数据展示系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与预处理   智能分析处理   集成频谱分析、时频变换等信号处理算法,自动提取时域频域特征;
    华盛恒辉l58ll334744 2025-05-13 10:20 376浏览
  • 在全球能源结构转型加速推进与政策驱动的双重作用下,油气输送、智慧水务及化学化工等流体计量场景正面临效率革命与智能化升级的迫切需求。传统机械式流量计虽在工业初期有效支撑了基础计量需求,但其机械磨损、精度衰减与运维困难等固有缺陷已难以适应现代工业对精准化、智能化与可持续发展的多维诉求。在此背景下,超声波流量计则凭借着高精度探测、可实时监测、无侵入式安装、无阻流部件、易于维护与绿色环保等优势实现了突破性发展,成为当代高精度流体计量体系中不可或缺的重要一环。该技术不仅是撬动能源利用效率提升、支撑智慧管网
    华普微HOPERF 2025-05-14 11:49 42浏览
  • 一、量子自旋态光学操控1、‌拓扑量子态探测‌磁光克尔效应通过检测拓扑磁结构(如磁斯格明子)的磁光响应,实现对量子材料中非平庸拓扑自旋序的非侵入式表征。例如,二维量子磁体中的“拓扑克尔效应”可通过偏振光旋转角变化揭示斯格明子阵列的动态演化,为拓扑量子比特的稳定性评估提供关键手段。2、‌量子态调控界面‌非厄米磁光耦合系统(如法布里-珀罗腔)通过耗散调控增强克尔灵敏度,可用于奇异点附近的量子自旋态高精度操控,为超导量子比特与光子系统的耦合提供新思路。二、光子量子计算架构优化1、‌光子内存计算器件‌基于
    锦正茂科技 2025-05-13 09:57 39浏览
  • 一、蓝牙射频电路设计的核心价值在智能穿戴、智能家居等物联网设备中,射频性能直接决定通信质量与用户体验。WT2605C等蓝牙语音芯片的射频电路设计,需在紧凑的PCB空间内实现低损耗信号传输与强抗干扰能力。射频走线每0.1dB的损耗优化可使通信距离提升3-5米,而阻抗失配可能导致30%以上的能效损失。二、射频走线设计规范1. 阻抗控制黄金法则50Ω标准阻抗实现:采用4层板时,顶层走线宽度0.3mm(FR4材质,介电常数4.3)双面板需通过SI9000软件计算,典型线宽1.2mm(1.6mm板厚)阻抗
    广州唯创电子 2025-05-13 09:00 27浏览
  •   电磁数据管理系统深度解析   北京华盛恒辉电磁数据管理系统作为专业的数据处理平台,旨在提升电磁数据的处理效率、安全性与可靠性。以下从功能架构、核心特性、应用场景及技术实现展开分析:   应用案例   目前,已有多个电磁数据管理系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据管理系统。这些成功案例为电磁数据管理系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与接入:实时接收天线、频谱仪等设备数据,兼容多协议接口,确保数据采集的全面性与实时性
    华盛恒辉l58ll334744 2025-05-13 10:59 285浏览
  • 在当下竞争激烈的 AI 赛道,企业高层的变动往往牵一发而动全身,零一万物近来就深陷这样的动荡漩涡。近日,零一万物联合创始人、技术副总裁戴宗宏离职创业的消息不胫而走。这位在大模型基础设施领域造诣颇深的专家,此前在华为云、阿里达摩院积累了深厚经验,在零一万物时更是带领团队短期内完成了千卡 GPU 集群等关键设施搭建,其离去无疑是重大损失。而这并非个例,自 2024 年下半年以来,李先刚、黄文灏、潘欣、曹大鹏等一众联创和早期核心成员纷纷出走。
    用户1742991715177 2025-05-13 21:24 131浏览
  • 在当下的商业版图中,胖东来宛如一颗璀璨的明星,散发着独特的光芒。它以卓越的服务、优质的商品以及独特的企业文化,赢得了消费者的广泛赞誉和业界的高度关注。然而,近期胖东来与自媒体博主之间的一场激烈对战,却如同一面镜子,映照出了这家企业在光环背后的真实与挣扎,也引发了我们对于商业本质、企业发展以及舆论生态的深入思考。​冲突爆发:舆论场中的硝烟弥漫​2025年4月,抖音玉石博主“柴怼怼”(粉丝约28万)突然发难,发布多条视频直指河南零售巨头胖东来。他言辞犀利,指控胖东来在玉石销售方面存在暴利行为,声称其
    疯人评 2025-05-14 13:49 51浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦