干货 | 深度剖析C语言的main函数

嵌入式大杂烩 2020-12-07 00:00

main的返回值

main函数的返回值用于说明程序的退出状态。如果返回0,则代表程序正常退出。返回其它数字的含义则由系统决定。通常,返回非零代表程序异常退出。

void main()

有一些书上的,都使用了void main( ) ,其实这是错误的。C/C++ 中从来没有定义过void main( ) 。

C++ 之父 Bjarne Stroustrup 在他的主页上的 FAQ 中明确地写着 “The definition void main( ) { /* … */ } is not and never has been C++, nor has it even been C.” 这可能是因为 在 C 和 C++ 中,不接收任何参数也不返回任何信息的函数原型为“void foo(void);”。

可能正是因为这个,所以很多人都误认为如果不需要程序返回值时可以把main函数定义成void main(void) 。然而这是错误的!main 函数的返回值应该定义为 int 类型,C 和 C++ 标准中都是这样规定的。

虽然在一些编译器中,void main() 可以通过编译,但并非所有编译器都支持 void main() ,因为标准中从来没有定义过 void main 。

g++3.2 中如果 main 函数的返回值不是 int 类型,就根本通不过编译。而 gcc3.2 则会发出警告。所以,为了程序拥有很好的可移植性,一定要用 int main ()。测试如下:

#include <stdio.h>

void main()
{
    printf("Hello world\n");
    return;
}

运行结果:g++ test.c

main()

那既然main函数只有一种返回值类型,那么是不是可以不写?规定:不明确标明返回值的,默认返回值为int,也就是说 main()等同于int main(),而不是等同于void main()。

在C99中,标准要求编译器至少给 main() 这种用法来个警告,而在c89中这种写法是被允许的。但为了程序的规范性和可读性,还是应该明确的指出返回值的类型。测试代码:

#include <stdio.h>

main()
{
    printf("Hello world\n");
    return 0;
}

运行结果:

C和C++的标准

在 C99 标准中,只有以下两种定义方式是正确的:

int mainvoid ) 
int mainint argc, char *argv[] ) 

若不需要从命令行中获取参数,就使用int main(void) ;否则的话,就用int main( int argc, char *argv[] )。当然参数的传递还可以有其他的方式,在下一节中,会单独来讲。

main 函数的返回值类型必须是 int ,这样返回值才能传递给程序的调用者(如操作系统),等同于 exit(0),来判断函数的执行结果。

C++89中定义了如下两种 main 函数的定义方式:

int main( ) 
int mainint argc, char *argv[] ) 

int main( ) 等同于 C99 中的 int main( void ) ;int main( int argc, char*argv[] ) 的用法也和C99 中定义的一样。同样,main函数的返回值类型也必须是int。

return 语句

如果 main 函数的最后没有写 return 语句的话,C99 和c++89都规定编译器要自动在生成的目标文件中加入return 0,表示程序正常退出。

不过,建议你最好在main函数的最后加上return语句,虽然没有这个必要,但这是一个好的习惯。在linux下我们可以使用shell命令:echo $? 查看函数的返回值。

#include <stdio.h>

int main()
{
    printf("Hello world\n");
}

运行结果:

同时,需要说明的是return的返回值会进行 类型转换,比如:若return 1.2 ;会将其强制转换为1,即真正的返回值是1,同理,return ‘a’ ;的话,真正的返回值就是97,;但是若return “abc”;便会报警告,因为无法进行隐式类型转换。

测试main函数返回值的意义

前文说到,main函数如果返回0,则代表程序正常退出。通常,返回非零代表程序异常退出。在本文的最后,测试一下:  test.c:

#include <stdio.h>

int main()
{
    printf("c 语言\n");
    return 11.1
}

在终端执行如下:

  testSigpipe git:(master)  vim test.c
  testSigpipe git:(master)  gcc test.c
  testSigpipe git:(master)  ./a.out && echo "hello world"  #&&与运算,前面为真,才会执行后边的
c 语言

可以看出,操作系统认为main函数执行失败,因为main函数的返回值是11

  testSigpipe git:(master)  ./a.out 
  testSigpipe git:(master)  echo $?
11

若将main函数中返回值该为0的话:

  testSigpipe git:(master)  vim test.c
  testSigpipe git:(master)  gcc test.c 
  testSigpipe git:(master)  ./a.out && echo "hello world" #hello
c 语言
hello world

可以看出,正如我们所期望的一样,main函数返回0,代表函数正常退出,执行成功;返回非0,代表函数出先异常,执行失败。

main函数传参

首先说明的是,可能有些人认为main函数是不可传入参数的,但是实际上这是错误的。main函数可以从命令行获取参数,从而提高代码的复用性。

函数原形

为main函数传参时,可选的main函数原形为:

int main(int argc , char* argv[],char* envp[]);

参数说明:

①、第一个参数argc表示的是传入参数的个数 。

②、第二个参数char* argv[],是字符串数组,用来存放指向的字符串参数的指针数组,每一个元素指向一个参数。各成员含义如下:

argv[0]:指向程序运行的全路径名。

argv[1]:指向执行程序名后的第一个字符串 ,表示真正传入的第一个参数。

argv[2]:指向执行程序名后的第二个字符串 ,表示传入的第二个参数。

…… argv[n]:指向执行程序名后的第n个字符串 ,表示传入的第n个参数。

规定:argv[argc]为NULL ,表示参数的结尾。

③、第三个参数char* envp[],也是一个字符串数组,主要是保存这用户环境中的变量字符串,以NULL结束。envp[]的每一个元素都包含ENVVAR=value形式的字符串,其中ENVVAR为环境变量,value为其对应的值。

envp一旦传入,它就只是单纯的字符串数组而已,不会随着程序动态设置发生改变。可以使用putenv函数实时修改环境变量,也能使用getenv实时查看环境变量,但是envp本身不会发生改变;平时使用到的比较少。

注意:main函数的参数char* argv[]和char* envp[]表示的是字符串数组,书写形式不止char* argv[]这一种,相应的argv[][]和 char** argv均可。

char* envp[]

写个小测试程序,测试main函数的第三个参数:

#include <stdio.h>

int main(int argc ,char* argv[] ,char* envp[])
{
    int i = 0;

    while(envp[i++])
    {
        printf("%s\n", envp[i]);
    }

    return 0;
}

运行结果:部分截图

envp[] 获得的信息等同于Linux下env命令的结果。

常用版本

在使用main函数的带参版本的时,最常用的就是:**int main(int argc , char* argv[]);**变量名称argc和argv是常规的名称,当然也可以换成其他名称。

命令行执行的形式为:可执行文件名 参数1 参数2 … … 参数n。可执行文件名称和参数、参数之间均使用空格隔开。

示例程序

#include <stdio.h>

int main(int argc, char* argv[])
{

    int i;
    printf("Total %d arguments\n",argc);

    for(i = 0; i < argc; i++)
    {
        printf("\nArgument argv[%d]  = %s \n",i, argv[i]);
    }

    return 0;
}

运行结果:

  cpp_workspace git:(master)  vim testmain.c 
  cpp_workspace git:(master)  gcc testmain.c 
  cpp_workspace git:(master)  ./a.out 1 2 3    #./a.out为程序名 1为第一个参数 , 2 为第二个参数, 3 为第三个参数
Total 4 arguments
Argument argv[0]  = ./a.out 
Argument argv[1]  = 1 
Argument argv[2]  = 2 
Argument argv[3]  = 3 
Argument argv[4]  = (null)    #默认argv[argc]为null

main的执行顺序

可能有的人会说,这还用说,main函数肯定是程序执行的第一个函数。那么,事实果然如此吗?相信在看了本节之后,会有不一样的认识。

为什么说main()是程序的入口

linux系统下程序的入口是”_start”,这个函数是linux系统库(Glibc)的一部分,当我们的程序和Glibc链接在一起形成最终的可执行文件的之后,这个函数就是程序执行初始化的入口函数。通过一个测试程序来说明:

#include <stdio.h>

int main()
{
    printf("Hello world\n");
    return 0;
}

编译:

gcc testmain.c -nostdlib     # -nostdlib (不链接标准库)

程序执行会引发错误:/usr/bin/ld: warning: cannot find entry symbol _start; 未找到这个符号

所以说:

  1. 编译器缺省是找 __start 符号,而不是 main
  2. __start 这个符号是程序的起始
  3. main 是被标准库调用的一个符号

那么,这个_start和main函数有什么关系呢?下面我们来进行进一步探究。

_start函数的实现该入口是由ld链接器默认的链接脚本指定的,当然用户也可以通过参数进行设定。_start由汇编代码实现。大致用如下伪代码表示:

void _start()
{
  %ebp = 0;
  int argc = pop from stack
  char ** argv = top of stack;
  __libc_start_main(main, argc, argv, __libc_csu_init, __linc_csu_fini,
  edx, top of stack);
}

对应的汇编代码如下:

_start:
 xor ebp, ebp //清空ebp
 pop esi //保存argc,esi = argc
 mov esp, ecx //保存argv, ecx = argv

 push esp //参数7保存当前栈顶
 push edx //参数6
 push __libc_csu_fini//参数5
 push __libc_csu_init//参数4
 push ecx //参数3
 push esi //参数2
 push main//参数1
 call _libc_start_main

hlt

可以看出,在调用_start之前,装载器就会将用户的参数和环境变量压入栈中。

main函数运行之前的工作

从_start的实现可以看出,main函数执行之前还要做一系列的工作。主要就是初始化系统相关资源:

Some of the stuff that has to happen before main():

set up initial stack pointer 

initialize static and global data 

zero out uninitialized data 

run global constructors

Some of this comes with the runtime library's crt0.o file or its __start() function. Some of it you need to do yourself.

Crt0 is a synonym for the C runtime library.

1.设置栈指针

2.初始化static静态和global全局变量,即data段的内容

3.将未初始化部分的赋初值:数值型short,int,long等为0,bool为FALSE,指针为NULL,等等,即.bss段的内容

4.运行全局构造器,类似c++中全局构造函数

5.将main函数的参数,argc,argv等传递给main函数,然后才真正运行main函数

main之前运行的代码

下面,我们就来说说在mian函数执行之前到底会运行哪些代码:(1)全局对象的构造函数会在main 函数之前执行。

(2)一些全局变量、对象和静态变量、对象的空间分配和赋初值就是在执行main函数之前,而main函数执行完后,还要去执行一些诸如释放空间、释放资源使用权等操作

(3)进程启动后,要执行一些初始化代码(如设置环境变量等),然后跳转到main执行。全局对象的构造也在main之前。

(4)通过关键字attribute,让一个函数在主函数之前运行,进行一些数据初始化、模块加载验证等。

示例代码

①、通过关键字attribute

#include <stdio.h>

__attribute__((constructor)) void before_main_to_run() 

    printf("Hi~,i am called before the main function!\n");
    printf("%s\n",__FUNCTION__); 


__attribute__((destructor)) void after_main_to_run() 

    printf("%s\n",__FUNCTION__); 
    printf("Hi~,i am called after the main function!\n");


int mainint argc, char ** argv ) 

    printf("i am main function, and i can get my name(%s) by this way.\n",__FUNCTION__); 
    return 0
}

②、全局变量的初始化

#include <iostream>

using namespace std;

inline int startup_1()
{
    cout<<"startup_1 run"<<endl;
    return 0;
}

int static no_use_variable_startup_1 = startup_1();

int main(int argc, const char * argv[]) 
{
    cout<<"this is main"<<endl;
    return 0;
}

至此,我们就聊完了main函数执行之前的事情,那么,你是否还以为main函数也是程序运行的最后一个函数呢?

结果当然不是,在main函数运行之后还有其他函数可以执行,main函数执行完毕之后,返回到入口函数,入口函数进行清理工作,包括全局变量析构、堆销毁、关闭I/O等,然后进行系统调用结束进程。

main函数之后执行的函数

1、全局对象的析构函数会在main函数之后执行; 2、用atexit注册的函数也会在main之后执行。

atexit函数

原形:

int atexit(void (*func)(void))

atexit 函数可以“注册”一个函数,使这个函数将在main函数正常终止时被调用,当程序异常终止时,通过它注册的函数并不会被调用。

编译器必须至少允许程序员注册32个函数。如果注册成功,atexit 返回0,否则返回非零值,没有办法取消一个函数的注册。

在 exit 所执行的任何标准清理操作之前,被注册的函数按照与注册顺序相反的顺序被依次调用。每个被调用的函数不接受任何参数,并且返回类型是 void。被注册的函数不应该试图引用任何存储类别为 auto 或 register 的对象(例如通过指针),除非是它自己所定义的。

多次注册同一个函数将导致这个函数被多次调用。函数调用的最后的操作就是出栈过程。main()同样也是一个函数,在结束时,按出栈的顺序调用使用atexit函数注册的,所以说,函数atexit是注册的函数和函数入栈出栈一样,是先进后出的,先注册的后执行。通过atexit可以注册回调清理函数。可以在这些函数中加入一些清理工作,比如内存释放、关闭打开的文件、关闭socket描述符、释放锁等等。

#include<stdio.h>
#include<stdlib.h>

void fn0void )fn1void )fn2void )fn3void )fn4void );

int mainvoid )

{
  //注意使用atexit注册的函数的执行顺序:先注册的后执行
    atexit( fn0 );  
    atexit( fn1 );  
    atexit( fn2 );  
    atexit( fn3 );  
    atexit( fn4 );

    printf"This is executed first.\n" );
    printf("main will quit now!\n");

    return 0;

}

void fn0()
{
    printf"first register ,last call\n" );
}

void fn1(
{
    printf"next.\n" );
}

void fn2()
{
    printf"executed " );
}

void fn3()
{
    printf"is " );
}

void fn4()
{
    printf"This " );
}


作者:z_ryan

原文:https://blog.csdn.net/z_ryan/category_7316855.html

免责声明:本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

最后

以上就是本次的分享,如果觉得文章不错,转发、在看,也是我们继续更新的动力。

猜你喜欢:

2020年精选原创笔记汇总

Linux 的启动流程

1024G 嵌入式资源大放送!包括但不限于C/C++、单片机、Linux等。在公众号聊天界面回复1024,即可免费获取!

嵌入式大杂烩 专注于嵌入式技术,包括但不限于C/C++、嵌入式、物联网、Linux等编程学习笔记,同时,内包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论 (0)
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 52浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 34浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 123浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 64浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 62浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 106浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 24浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 69浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 49浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 64浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 96浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦