图文讲解 HTTPS 的原理!

strongerHuang 2020-12-09 00:00

关注+星标公众,不错过精彩内容

转自 | 码海

近年来各大公司对信息安全传输越来越重视,也逐步把网站升级到 HTTPS 了,那么大家知道 HTTPS 的原理是怎样的吗,到底是它是如何确保信息安全传输的?网上挺多介绍 HTTPS,但我发现总是或多或少有些点有些遗漏,没有讲全,今天试图由浅入深地把 HTTPS 讲明白,相信大家看完一定能掌握 HTTPS 的原理,本文大纲如下:
  1. HTTP 为什么不安全
  2. 安全通信的四大原则
  3. HTTPS 通信原理简述
  • 对称加密
  • 数字证书
  • 非对称加密
  • 数字签名
  • 其它 HTTPS 相关问题
  • HTTP 为什么不安全

    HTTP 由于是明文传输,主要存在三大风险

    1、 窃听风险

    中间人可以获取到通信内容,由于内容是明文,所以获取明文后有安全风险

    2、 篡改风险

    中间人可以篡改报文内容后再发送给对方,风险极大

    3、 冒充风险

    比如你以为是在和某宝通信,但实际上是在和一个钓鱼网站通信。

    HTTPS 显然是为了解决这三大风险而存在的,接下来我们看看 HTTPS 到底解决了什么问题。

    安全通信的四大原则

    看了上一节,不难猜到 HTTPS 就是为了解决上述三个风险而生的,一般我们认为安全的通信需要包括以下四个原则: 机密性完整性身份认证不可否认

    1. 机密性:即对数据加密,解决了窃听风险,因为即使被中间人窃听,由于数据是加密的,他也拿不到明文
    2. 完整性:指数据在传输过程中没有被篡改,不多不少,保持原样,中途如果哪怕改了一个标点符号,接收方也能识别出来,从来判定接收报文不合法
    3. 身份认证:确认对方的真实身份,即证明「你妈是你妈」的问题,这样就解决了冒充风险,用户不用担心访问的是某宝结果却在和钓鱼网站通信的问题
    4. 不可否认: 即不可否认已发生的行为,比如小明向小红借了 1000 元,但没打借条,或者打了借条但没有 签名,就会造成小红的资金损失

    接下来我们一步步来看看 HTTPS 是如何实现以满足以上四大安全通信原则的。

    HTTPS 通信原理简述

    对称加密:HTTPS 的最终加密形式

    既然 HTTP 是明文传输的,那我们给报文加密不就行了,既然要加密,我们肯定需要通信双方协商好密钥吧,一种是通信双方使用同一把密钥,即对称加密的方式来给报文进行加解密。

    如图示:使用对称加密的通信双方使用同一把密钥进行加解密。

    对称加密具有加解密速度快,性能高的特点,也是 HTTPS 最终采用的加密形式,但是这里有一个关键问题,对称加密的通信双方要使用同一把密钥,这个密钥是如何协商出来的?如果通过报文的方式直接传输密钥,之后的通信其实还是在裸奔,因为这个密钥会被中间人截获甚至替换掉,这样中间人就可以用截获的密钥解密报文,甚至替换掉密钥以达到篡改报文的目的。

    有人说对这个密钥加密不就完了,但对方如果要解密这个密钥还是要传加密密钥给对方,依然还是会被中间人截获的,这么看来直接传输密钥无论怎样都无法摆脱俄罗斯套娃的难题,是不可行的。

    非对称加密:解决单向对称密钥的传输问题

    直接传输密钥无论从哪一端传从上节分析来看是不行了,这里我们再看另一种加密方式:非对称加密

    非对称加密即加解密双方使用不同的密钥,一把作为公钥,可以公开的,一把作为私钥,不能公开,公钥加密的密文只有私钥可以解密,私钥加密的内容,也只有公钥可以解密。

    注:私钥加密其实这个说法其实并不严谨,准确的说私钥加密应该叫私钥签名,因为私密加密的信息公钥是可以解密的,而公钥是公开的,任何人都可以拿到,用公钥解密叫做验签

    这样的话对于 server 来说,保管好私钥,发布公钥给其他 client, 其他 client 只要把对称加密的密钥加密传给 server 即可,如此一来由于公钥加密只有私钥能解密,而私钥只有 server 有,所以能保证 client 向 server 传输是安全的,server 解密后即可拿到对称加密密钥,这样交换了密钥之后就可以用对称加密密钥通信了。

    但是问题又来了, server 怎么把公钥安全地传输给 client 呢。如果直接传公钥,也会存在被中间人调包的风险。

    数字证书,解决公钥传输信任问题

    如何解决公钥传输问题呢,从现实生活中的场景找答案,员工入职时,企业一般会要求提供学历证明,显然不是什么阿猫阿狗的本本都可称为学历,这个学历必须由第三方权威机构(Certificate Authority,简称 CA)即教育部颁发,同理,server 也可以向 CA 申请证书,在证书中附上公钥,然后将证书传给 client,证书由站点管理者向 CA 申请,申请的时候会提交 DNS 主机名等信息,CA 会根据这些信息生成证书

    这样当 client 拿到证书后,就可以获得证书上的公钥,再用此公钥加密对称加密密钥传给 server 即可,看起来确实很完美,不过在这里大家要考虑两个问题

    问题一、 如何验证证书的真实性,如何防止证书被篡改

    想象一下上文中我们提到的学历,企业如何认定你提供的学历证书是真是假呢,答案是用学历编号,企业拿到证书后用学历编号在学信网上一查就知道证书真伪了,学历编号其实就是我们常说的数字签名,可以防止证书造假。

    回到 HTTPS 上,证书的数字签名该如何产生的呢,一图胜千言

    步骤如下 1、 首先使用一些摘要算法(如 MD5)将证书明文(如证书序列号,DNS主机名等)生成摘要,然后再用第三方权威机构的私钥对生成的摘要进行加密(签名)

    消息摘要是把任意长度的输入揉和而产生长度固定的伪随机输入的算法,无论输入的消息有多长,计算出来的消息摘要的长度总是固定的,一般来说,只要内容不同,产生的摘要必然不同(相同的概率可以认为接近于 0),所以可以验证内容是否被篡改了。

    为啥要先生成摘要再加密呢,不能直接加密?

    因为使用非对称加密是非常耗时的,如果把整个证书内容都加密生成签名的话,客户端验验签也需要把签名解密,证书明文较长,客户端验签就需要很长的时间,而用摘要的话,会把内容很长的明文压缩成小得多的定长字符串,客户端验签的话就会快得多。

    2、客户端拿到证书后也用同样的摘要算法对证书明文计算摘要,两者一笔对就可以发现报文是否被篡改了,那为啥要用第三方权威机构(Certificate Authority,简称 CA)私钥对摘要加密呢,因为摘要算法是公开的,中间人可以替换掉证书明文,再根据证书上的摘要算法计算出摘要后把证书上的摘要也给替换掉!这样 client 拿到证书后计算摘要发现一样,误以为此证书是合法就中招了。所以必须要用 CA 的私钥给摘要进行加密生成签名,这样的话 client 得用 CA 的公钥来给签名解密,拿到的才是未经篡改合法的摘要(私钥签名,公钥才能解密)

    server 将证书传给 client 后,client 的验签过程如下

    这样的话,由于只有 CA 的公钥才能解密签名,如果客户端收到一个假的证书,使用 CA 的公钥是无法解密的,如果客户端收到了真的证书,但证书上的内容被篡改了,摘要比对不成功的话,客户端也会认定此证书非法。

    细心的你一定发现了问题,CA 公钥如何安全地传输到 client ?如果还是从 server 传输到 client,依然无法解决公钥被调包的风险,实际上此公钥是存在于 CA 证书上,而此证书(也称 Root CA 证书)被操作系统信任,内置在操作系统上的,无需传输,如果用的是  Mac 的同学,可以打开 keychain 查看一下,可以看到很多内置的被信任的证书。

    server 传输 CA 颁发的证书,客户中收到证书后使用内置 CA 证书中的公钥来解密签名,验签即可,这样的话就解决了公钥传输过程中被调包的风险。

    问题二、 如何防止证书被调包

    实际上任何站点都可以向第三方权威机构申请证书,中间人也不例外。

    正常站点和中间人都可以向 CA 申请证书,获得认证的证书由于都是 CA 颁发的,所以都是合法的,那么此时中间人是否可以在传输过程中将正常站点发给 client 的证书替换成自己的证书呢,如下所示

    答案是不行,因为客户端除了通过验签的方式验证证书是否合法之外,还需要验证证书上的域名与自己的请求域名是否一致,中间人中途虽然可以替换自己向 CA 申请的合法证书,但此证书中的域名与 client 请求的域名不一致,client 会认定为不通过!

    但是上面的证书调包给了我们一种思路,什么思路?大家想想,  HTTPS 既然是加密的, charles 这些「中间人」为啥能抓到明文的包呢,其实就是用了证书调包这一手法,想想看,在用 charles 抓 HTTPS 的包之前我们先要做什么,当然是安装 charles 的证书

    这个证书里有 charles 的公钥,这样的话 charles 就可以将 server 传给 client 的证书调包成自己的证书,client 拿到后就可以用你安装的 charles  证书来验签等,验证通过之后就会用 charles 证书中的公钥来加密对称密钥了,整个流程如下

    由此可知,charles 这些中间人能抓取 HTTPS 包的前提是信任它们的 CA 证书,然后就可以通过替换证书的方式进行瞒天过海,所以我们千万不要随便信任第三方的证书,避免安全风险。

    其它 HTTPS 相关问题

    什么是双向认证

    以上的讲述过程中,我们只是在 client 端验证了 server 传输证书的合法性,但 server 如何验证 client 的合法性,还是用证书,我们在网上进行转账等操作时,想想看是不是要先将银行发给我们的 U 盾插到电脑上?其实也是因为 U 盾内置了证书,通信时将证书发给 server,server 验证通过之后即可开始通信。

    画外音:身份认证只是 U 盾功能的一种,还有其他功能,比如加解密都是在 U 盾中执行,保证了密钥不会出现在内存中

    什么是证书信任链

    前文说了,我们可以向 CA 申请证书,但全世界的顶级 CA(Root CA) 就那么几个,每天都有很多人要向它申请证书,它也忙不过来啊,怎么办呢,想想看在一个公司里如果大家都找 CEO 办事,他是不是要疯了,那他能怎么办?授权,他会把权力交给 CTO,CFO 等,这样你们只要找 CTO 之类的就行了,CTO 如果也忙不过来呢,继续往下授权啊。

    同样的,既然顶级 CA 忙不过来,那它就向下一级,下下级 CA 授权即可,这样我们就只要找一级/二级/三级 CA 申请证书即可。怎么证明这些证书被 Root CA 授权过了呢,小一点的 CA 可以让大一点的 CA 来签名认证,比如一级 CA 让 Root CA 来签名认证,二级 CA 让一级 CA 来签名认证,Root CA 没有人给他签名认证,只能自己证明自己了,这个证书就叫「自签名证书」或者「根证书」,我们必须信任它,不然证书信任链是走不下去的(这个根证书前文我们提过,其实是内置在操作系统中的)

    证书信任链

    现在我们看看如果站点申请的是二级 CA 颁发的证书,client 收到之后会如何验证这个证书呢,实际上 service 传了传给二级 CA 的证书外,还会把证书信任链也一起传给客户端,这样客户端会按如下步骤进行验证:

    1. 浏览器就使用信任的根证书(根公钥)解析证书链的根证书得到一级证书的公钥+摘要验签
    2. 拿一级证书的公钥解密一级证书,拿到二级证书的公钥和摘要验签
    3. 再然后拿二级证书的公钥解密 server 传过来的二级证书,得到服务器的公钥和摘要验签,验证过程就结束了

    总结

    相信大家看完本文应该对 HTTPS 的原理有了很清楚的认识了, HTTPS 无非就是 HTTP + SSL/TLS

    而 SSL/TLS 的功能其实本质上是如何协商出安全的对称加密密钥以利用此密钥进行后续通讯的过程,带着这个疑问相信你不难理解数字证书和数字签名这两个让人费解的含义,搞懂了这些也就明白了为啥  HTTPS 是加密的,charles 这些工具却能抓包出明文来。

    巨人的肩膀

    • https://juejin.cn/post/6844903958863937550

    • https://showme.codes/2017-02-20/understand-https/

    • 极客时间,透视 HTTP 协议

    • https://zhuanlan.zhihu.com/p/67199487


    ------------ END ------------


    推荐阅读:
    精选汇总 | 专栏 | 目录 | 搜索
    精选汇总 | ARM、Cortex-M
    精选汇总 | ST工具、下载编程工具

    关注 微信公众号『嵌入式专栏』,回复“1024”查看更多内容,回复“加群”按规则加入技术交流群。


    点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

    strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
    评论 (0)
    • 一、系统概述MYD-LD25X搭载的Debian系统包含以太网、WIFI/BT、USB、RS485、RS232、CAN、AUDIO、HDMI显示和摄像头等功能,同时也集成了XFCE轻量化桌面、VNC远程操控、SWITCH网络交换和TSN时间敏感网络功能,为工业设备赋予“超强算力+实时响应+极简运维”的体验!类别名称描述源码TF-AArm Trusted Firmware 2.8OP-TEEOP-TEE 3.19BootloaderU-boot 2022.10KernelLinux Ke
      米尔电子嵌入式 2025-03-07 14:08 250浏览
    •        深夜的公园里,当路灯熄灭后,传统监控摄像头只能拍出模糊的黑白画面,仿佛老式胶片电影里的场景。而搭载为旌瑶光ISP的摄像头,却能像猫科动物一样,在几乎全黑的环境中捕捉到行人衣服的颜色、树叶的纹理,甚至快速跑动的宠物狗毛发细节。这种从“黑白默片”到“全彩4K电影”的跨越,背后是为旌瑶光ISP对传统红外补光技术的颠覆性创新。一、传统方案之困:被红外光“绑架”的夜视世界        传统安防摄像头依赖红外
      中科领创 2025-03-07 16:50 335浏览
    • 在企业管理和职场环境中,权力是一个常被提及却又让人感到微妙的话题。有人觉得它充满吸引力,有人却对它避之不及。然而,不管你对权力的态度如何,理解它、掌握它,甚至善用它,都是职场成功的重要一环。今天,我们就来深入探讨权力的本质,特别是个人权力和社会权力的区别,以及如何在职场中逐步建立属于自己的影响力。权力的两种面貌:你掌控自己,还是掌控他人?说到权力,首先要区分它的两种类型。个人权力是你对自己生活的掌控感。比如,你能自由决定自己的职业方向,不用总是请示他人。这种权力让人感到踏实和满足,是我们在生活中
      优思学院 2025-03-07 15:56 216浏览
    • Sub-GHz,即工作频段低于1GHz的无线通信技术,常见频段有315MHz、433MHz、868MHz与915MHz等。其可借助无线电波在自由空间传播的特性,把数据调制到射频载波上进行传输,达成物联网设备间的无线通信,是物联网设备实现高效、稳定、无缝交互的“通信基石”。典型射频信号(无线电波)收发电路简示在工业自动化、智慧城市、智慧农业与智能家居等物联网领域中,LoRa、Wi-SUN、Z-Wave、Sigfox等工业级通信协议大多运行在Sub-GHz频段。而正是通过Sub-GHz射频技术,传感
      华普微HOPERF 2025-03-07 11:39 167浏览
    • 深圳触觉智能RK3506开发板现已上市,开启预售!搭载瑞芯微RK3506B/J超低功耗工业处理器(1.5GHz三核A7+M0,主频1.5GHz);支持1280×1280显示、双百兆网口、星闪无线三模,板载高达2路CAN FD与5路串口。RK3506适用场景简介工业控制‌:RK3506适用于工业控制、工业通信、人机交互等应用场景。其多核异构架构(3xCortex-A7+Cortex-M0)和外设接口丰富,支持Buildroot、Yocto系统,适合轻量级HMI应用‌。‌工业通信‌:RK3506均支
      Industio_触觉智能 2025-03-07 10:04 136浏览
    • 多人同时共享相同无线网络,以下场景是否是您熟悉的日常?姐姐:「妈~我在房间在线上课,影音一直断断续续的怎么上课啊!」奶奶:「媳妇啊~我在在线追剧,影片一直卡卡的,实在让人生气!」除此之外,同时间有老公在跟客户开在线会议,还有弟弟在玩在线游戏,而妈妈自己其实也在客厅追剧,同时间加总起来,共有五个人同时使用这个网络!我们不论是在家里、咖啡厅、餐厅、商场或是公司,都会面临到周遭充斥着非常多的无线路由器(AP),若同时间每位使用者透过手机、平板或是笔电连接到相同的一个网络,可想而知网络上的壅塞及相互干扰
      百佳泰测试实验室 2025-03-06 16:50 162浏览
    • 近年来,越来越多的企业在5S管理的基础上,开始追求6S、7S甚至8S管理,仿佛S越多,管理就越先进,企业就越优秀。于是,6S增加了“安全”,7S又加上了“节约”,8S甚至引入了“学习”……看似更加全面,实则很多企业只是机械地增加S,却忽略了管理的核心目标:提升效率、降低浪费、优化工作环境。优思学院认为,5S本身已经是一套成熟的精益管理工具,它的核心理念不仅简单高效,而且易于实施和推广。如果企业只是为了赶时髦,盲目增加S,而没有真正理解5S的本质,那么这些额外的“S”很可能会变成管理上的负担,而不
      优思学院 2025-03-07 12:43 207浏览
    • ​CS6212是一款可分别用于USB Type-C主机/显示端口源应用的带重定时的有源开关。这设备符合USB 3.2标准版本1.0和USB Type-C标准上的VESA DisplayPort Alt模式 1.0版,支持通过GPIO或12C进行灵活的模式切换。此设备支持USB 3.2第2x1代 运行速度高达10Gbps,DisplayPort 1.4运行速度高达HBR3 8.1Gbps。CS6212管脚分布及功能定义:CS6212支持重定时器训练,并支持USB 3.2标准中定义的状态状态机(RT
      QQ1540182856 2025-03-07 10:09 166浏览
    • 文/Leon编辑/cc孙聪颖2025年全国两会进行时,作为“十四五”规划收官之年,本届两会释放出坚定目标、稳中求进、以进促稳等信号。其中,企业家们的建议备受关注,关系到民营经济在2025年的走向。作为国内科技制造业的“老兵”,全国人大代表、TCL集团创始人及董事长李东生在本届两会中提出三份代表建议,包括《关于优化中国科技制造业融资环境的建议》、《关于加强AI深度伪造欺诈管理的建议》和《关于降低灵活就业人员社会保险参保门槛的建议》,表现出对科技制造、AI发展和劳动者保障方面的关注。会后,李东生接受
      华尔街科技眼 2025-03-06 19:41 149浏览
    • 服务器应用环境与客户需求PCIe 5.0高速接口技术的成熟驱动着生成式AI与高效能运算等相关应用蓬勃发展。在随着企业对服务器性能的要求日益严苛,服务器更新换代的周期也持续加快。在此背景下,白牌与DIY(Do It Yourself)服务器市场迎来了新的发展契机,但同时也面临着更趋复杂的技术挑战。传统上,白牌与DIY服务器以其高度客制化与成本效益优势受到市场青睐。然而,随着PCIe 5.0等高速技术的导入,服务器系统的复杂度大幅提升,对组装技术与组件兼容性也就提出更高的要求。举个简单的例子来说,P
      百佳泰测试实验室 2025-03-06 17:00 169浏览
    • 深圳触觉智能SOM3506核心板现已上市,搭载瑞芯微RK3506B/J超低功耗处理器(1.5GHz三核A7+M0),低功耗满载仅0.7W,支持40℃~85℃工作环境,即日起宽温级59元/工业级68元,特价开售!芯片介绍RK3506是瑞芯微Rockchip在2024年第四季度全新推出的Arm嵌入式芯片平台,三核Cortex-A7+单核Cortex-M0多核异构设计,CPU频率达1.5Ghz, M0 MCU为200Mhz。RK3506适用场景简介工业控制‌:RK3506适用于工业控制、工业通信、人机
      Industio_触觉智能 2025-03-07 10:03 165浏览
    • ASL6328芯片支持高达 6.0 Gbps 运行速率的交流和直流耦合输入T-MDS 信号,具备可编程均衡和抖动清理功能。ASL6328 是一款单端口 HDMI/DVI 电平转换 / 中继器,具有重新定时功能。它包含 TypeC双模式 DP 线缆适配器寄存器,可用于识别线缆适配器的性能。抖动清理 PLL(锁相环)能够消除输入抖动,并完全重置系统抖动容限,因此能更好地满足更高数据速率下 HDMI 抖动合规性要求。设备的运行和配置可通过引脚设置或 I2C 总线实现。自动断电和静噪功能提供了灵活的电
      QQ1540182856 2025-03-06 14:26 137浏览
    我要评论
    0
    0
    点击右上角,分享到朋友圈 我知道啦
    请使用浏览器分享功能 我知道啦