我的EMMC启动不正常,问题到底在哪里?

原创 高速先生 2024-07-29 11:31


公众号 | 高速先生

作者 | 周伟


上篇文章我们提到希望大家一起来分享硬件调试中发现的一些低级错误,果然就有我们的铁杆粉丝之一“晒不”发来了他初步整理的案例素材,大家一起来学习一下吧,也谢谢他的分享!

这个项目的主芯片是瑞芯微的RV1126(位号U10),分别拖了一个金士顿的eMMC芯片(位号U40)和镁光的NAND Flash芯片(位号U41),在Layout的时候做了兼容设计,也就是通过选焊电阻的方式,让主芯片来选通其中一个芯片,使用的时候二选一,eMMC和NAND Flash芯片不会一起工作,大致的拓扑图如下所示:

从Layout设计文件可以看到,几个芯片都是放在Top面,eMMC和NAND Flash基本是放在同一个中心位置,所以贴片的时候只能选择贴其中的一个,两个芯片是没法同时贴上的,所以需要做兼容设计。两个分支电阻在垂直空间上重叠放置在Top面和Bottom面,这样如果只焊接其中一个电阻的时候,确实是可以做选通操作,看起来Layout设计没什么问题,对应的走线如下图所示:

设计上没发现什么问题,然后就制板贴片开始调试。硬件在调试板子时发现,有时候上电,系统会有卡死的情况,同样的固件在开发板上是OK的,软件做了几轮修改都会有类似软件报错的情况,显示出跑到eMMC操作时就卡住了,最后只能怀疑是硬件或者PCB Layout的问题。

但硬件有排除不是自己问题的理由:“最小系统模块(包含eMMC)的原理是直接复制开发板的,所有的器件贴装也和开发板一样,同样的代码在之前开发板上没有问题,而现在新设计的板子有问题,那肯定是PCB Layout出了问题”。


不可否认,硬件的话确实有一定的道理,硬件原理之前是验证过的,这样压力一下子就给到了PCB设计工程师。无奈,PCB工程师只能想办法自证清白,在没有专职SI工程师的情况下,PCB设计工程师只能通过再次查板,进行粗略的估算和评估一些影响,检查的方向如下:


1、阻抗不匹配方向:所有信号走线没有跨分割平面,走线线宽和阻抗计算也没有错误,同时也不存在较长的走线Stub,所以这一条不会影响。


2、时序方向:因为需要跑200MHz的信号,等长也是比较关键的,但因为没有做仿真,只能按照芯片的手册要求来做好等长约束,检查了等长表,每根信号走线长度也是都可以满足芯片要求,所以时序这块的影响也是可以初步排除。


3、电源方向:按照经验简单算了电源平面载流能力是可以满足需求的,相应的电源Pin脚也有足够的滤波电容,硬件测试电压和电源噪声都是可以满足要求,所以电源的影响也可以排除。


同时也和开发版本的设计进行了对比,硬件人员觉得是因为时钟信号走线和开发板不一致导致的。如下图是开发板的走线情况。

开发板上eMMC和NAND Flash也是同面同中心放置,原理是一样的,也是通过两个电阻做了选通,只是走线上的分支更短,而新改板后的分支相对来说长了很多。所以硬件人员有理由觉得是PCB改版带来的问题,所有的原理和贴片器件都是一样,PCB设计改了就出问题了,这个大概率是PCB设计不一样而带来的问题。


而PCB设计工程师也有自己的主张:“CLK信号是由RV1126源端发出的,开发板的串联阻抗匹配电阻放在了终端,靠近eMMC和NAND Flash是不对的,应该把串联匹配电阻靠近源端,所以本次改版设计的电阻就往源端放了,这样确实会导致分支变长,但由于是选焊的,如果一次只焊接其中一路的情况下,另一路是没有导通的,这样相当于没有分支的影响,原理上来说信号质量会更好。如果连串联匹配电阻放在源端也被怀疑有问题的话,那就是怀疑信号完整性的理论有问题了。”PCB设计工程师的话也是说得在理,无可挑剔,由于没有SI人员支持,于是双方各执一词,谁也说服不了谁。

经过几天的“沟通”,压力还是在PCB工程师这。就在PCB工程师拿着PCBA研究的时候,无意中发现虽然U41没有焊接,但是R41却焊接了器件。这个发现仿佛一道佛光,拯救了“背锅侠”。在PCB工程师的反馈下,硬件拆除了R41,系统终于可以正常启动了。


这个时候硬件人员就有疑问了,为什么开发板上的R41没有拆除可以正常工作,改版后的R41焊上就有问题了呢?大家可以帮忙回答一下哈!


(同时也欢迎大家继续提供类似这种调试过程中的典型错误案例素材,谢谢!


声明:未经高速先生授权许可,任何机构、媒体、个人不得转载、修改、摘编或以其他方式复制、传播高速先生平台的原创作品。

— end —

Q

本期提问

为什么开发板上的R41没有拆除可以正常工作,改版后的R41焊上却有问题呢?



如果不想错过“高速先生”的精彩内容,请记得点击上方蓝字“高速先生”,右上角“...”点选“设为星标”。可第一时间看到高速先生的推文,感谢大家的关注和支持!


扫码关注

微信号|高速先生


觉得内容还不错的话,点个“在看”呗

高速先生 一博科技自媒体,用浅显易懂的方式讲述高速设计,有“工程师掌上图书馆”之美称,随时随地为网友解答高速设计技术问题。
评论 (0)
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 195浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 93浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 346浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 341浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 622浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 513浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 89浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 79浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 211浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 83浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 104浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 161浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 226浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 319浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦