OpenVINO2024C++推理使用技巧合集

原创 OpenCV学堂 2024-07-25 18:57

点击上方蓝字关注我们

微信公众号:OpenCV学堂

关注获取更多计算机视觉与深度学习知识

前言

很多人都使用OpenVINO新版的C++ 或者Python的SDK,都觉得非常好用,OpenVINO2022之后的版本C++ SDK做了大量的优化与整理,已经是非常贴近开发的使用习惯与推理方式。与OpenCV的Mat对象对接方式更是几乎无缝对接,非常的方便好用。

导入头文件

一行代码就获取C++ SDK支持

#include 

创建推理推理请求

总结起来有三种不同方式,针对单个固定输入与输出层的模型,只需要三行代码即可创建:
ov::Core ie;ov::CompiledModel compiled_model = ie.compile_model(settings.getWeight_file(), "CPU");infer_request = compiled_model.create_infer_request();
对于支持动态输入的模型,需要首先设置支持动态输入的维度,一般都是图像宽高,加载模型,创建推理请求的方式如下:
ov::Core ie;auto model = ie.read_model(settings.getWeight_file());auto inputs = model->inputs();
// change the input as dynamic shape supportfor(auto input_one : inputs){ auto input_shape = input_one.get_partial_shape(); input_shape[0] = 1; input_shape[1] = 3; input_shape[2] = -1; input_shape[3] = -1;}
ov::CompiledModel compiled_model = ie.compile_model(model, "CPU");infer_request = compiled_model.create_infer_request();
如果有多个输入层的模型,想动态修改输入层与模型输入的格式,然后再创建推理请求,代码实现如下:
ov::Core ie;std::cout<<"model file: "<std::endl;< span="">auto model = ie.read_model(settings.getWeight_file());std::cout<<"read model file finished!"<<std::endl;< span="">
// setting input data format and layoutov::preprocess::PrePostProcessor ppp(model);ov::preprocess::InputInfo& inputInfo0 = ppp.input(0);inputInfo0.tensor().set_element_type(ov::element::u8);inputInfo0.tensor().set_layout({ "NCHW" });inputInfo0.model().set_layout("NCHW");
ov::preprocess::InputInfo& inputInfo1 = ppp.input(1);inputInfo1.tensor().set_element_type(ov::element::u8);inputInfo1.tensor().set_layout({ "NCHW" });inputInfo1.model().set_layout("NCHW");model = ppp.build();
ov::CompiledModel compiled_model = ie.compile_model(model, "CPU");this->infer_request = compiled_model.create_infer_request();

导出IR格式模型 

我发现OpenVINO已经支持脚本方式导出XML的IR格式文件,简单易用,推荐给大家。以下是导出YOLOv8格式IR文件脚本,亲测有效:
ov_model = ov.convert_model("D:/python/my_yolov8_train_demo/yolov8n.onnx",                             input=[[1, 3, 640, 640]])ov.save_model(ov_model, str("D:/bird_test/back1/yolov8_ov.xml"))

图像预处理 

OpenVINO已经有自己的预处理方式,代码如下:
ov::preprocess::PrePostProcessor ppp(model);ov::preprocess::InputInfo& input = ppp.input(tensor_name);// we only need to know where is C dimensioninput.model().set_layout("...C");// specify scale and mean values, order of operations is importantinput.preprocess().mean(116.78f).scale({ 57.21f, 57.45f, 57.73f });// insert preprocessing operations to the 'model'model = ppp.build();
同时你还可以使用OpenCV的blobfromImage函数来完成图像预处理:
// 预处理cv::Mat blob_image;resize(image, blob_image, cv::Size(input_w, input_h));blob_image.convertTo(blob_image, CV_32F);blob_image = blob_image / 255.0;

或者

cv::Mat blob = cv::dnn::blobFromImage(image, 1 / 255.0, cv::Size(640, 640), cv::Scalar(0, 0, 0), true, false);

预测推理 

OpenVINO C++ SDK支持两种方式预测推理,分别是同步与异步模式,此外异步模式还支持Callback的方式实现后处理,这样对于实现推理流水线非常有用。代码片段如下:
同步推理,等待结果
this->infer_request.infer();

异步方式 + Callback

auto restart_once = true;infer_request.set_callback([&, restart_once](std::exception_ptr exception_ptr) mutable {    if (exception_ptr) {        // procces exception or rethrow it.        std::rethrow_exception(exception_ptr);    } else {        // Extract inference result        ov::Tensor output_tensor = infer_request.get_output_tensor();        // Restart inference if needed        if (restart_once) {            infer_request.start_async();            restart_once = false;        }    }});// Start inference without blocking current threadinfer_request.start_async();// Get inference status immediatelybool status = infer_request.wait_for(std::chrono::milliseconds{0});// Wait for one milisecondstatus = infer_request.wait_for(std::chrono::milliseconds{1});// Wait for inference completioninfer_request.wait();

cv::Mat与ov::Tensor转换

从Mat创建Tensor对象,这个时候我就喜欢模型的输入格式是NHWC的方式,这样创建Tensor,设置输入数据只要一行代码即可,示例如下:
bgr.convertTo(bgr, CV_32FC3);gray.convertTo(gray, CV_32F, 1.0/255);
ov::Tensor blob1(input_tensor_1.get_element_type(), input_tensor_1.get_shape(), (float *)bgr.data);ov::Tensor blob2(input_tensor_2.get_element_type(), input_tensor_2.get_shape(), (float *)gray.data);
推理预测结果Tensor到OpenCV Mat对象,也很简单明了,如果输出数据是NHWC四维,可以直接用下面的代码:
const float* prob = (float*)output.data();const ov::Shape outputDims = output.get_shape();size_t numRows = outputDims[1];size_t numCols = outputDims[2];

// 通道数为1 用这行

cv::Mat detOut(numRows, numCols, CV_32F, (float*)prob);

// 通道数为3 用这行

cv::Mat detOut(numRows, numCols, CV_32FC3, (float*)prob);

如果输出是1xHW的三维张量,直接用下面这样:

cv::Mat detOut(numRows, numCols, CV_32F, (float*)prob);


从此你就真的解锁了OpenVINO C++ 模型推理部署的各种细节了。


OpenCV4系统化学习


深度学习系统化学习

推荐阅读

OpenCV4.8+YOLOv8对象检测C++推理演示

ZXING+OpenCV打造开源条码检测应用

攻略 | 学习深度学习只需要三个月的好方法

三行代码实现 TensorRT8.6 C++ 深度学习模型部署

实战 | YOLOv8+OpenCV 实现DM码定位检测与解析

对象检测边界框损失 – 从IOU到ProbIOU

初学者必看 | 学习深度学习的五个误区


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 94浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 114浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 185浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 104浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 122浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 99浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 65浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 134浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 178浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 79浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 143浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦