一个严谨的STM32串口DMA发送&接收机制

嵌入式电子 2024-07-22 07:54
1 前言

直接存储器访问(Direct Memory Access),简称DMA。DMA是CPU一个用于数据从一个地址空间到另一地址空间“搬运”(拷贝)的组件,数据拷贝过程不需CPU干预,数据拷贝结束则通知CPU处理。

因此,大量数据拷贝时,使用DMA可以释放CPU资源。DMA数据拷贝过程,典型的有:

  • 内存—>内存,内存间拷贝
  • 外设—>内存,如uart、spi、i2c等总线接收数据过程
  • 内存—>外设,如uart、spi、i2c等总线发送数据过程

2 串口有必要使用DMA吗

串口(uart)是一种低速的串行异步通信,适用于低速通信场景,通常使用的波特率小于或等于115200bps。

对于小于或者等于115200bps波特率的,而且数据量不大的通信场景,一般没必要使用DMA,或者说使用DMA并未能充分发挥出DMA的作用。

对于数量大,或者波特率提高时,必须使用DMA以释放CPU资源,因为高波特率可能带来这样的问题:

  • 对于发送,使用循环发送,可能阻塞线程,需要消耗大量CPU资源“搬运”数据,浪费CPU
  • 对于发送,使用中断发送,不会阻塞线程,但需浪费大量中断资源,CPU频繁响应中断;以115200bps波特率,1s传输11520字节,大约69us需响应一次中断,如波特率再提高,将消耗更多CPU资源
  • 对于接收,如仍采用传统的中断模式接收,同样会因为频繁中断导致消耗大量CPU资源

因此,高波特率场景下,串口非常有必要使用DMA。

3 实现方式

整体设计图

4 STM32串口使用DMA

关于STM32串口使用DMA,不乏一些开发板例程及网络上一些博主的使用教程。使用步骤、流程、配置基本大同小异,正确性也没什么毛病,但都是一些基本的Demo例子,作为学习过程没问题;实际项目使用缺乏严谨性,数据量大时可能导致数据异常。

测试平台:

  • STM32F030C8T6
  • UART1/UART2
  • DMA1 Channel2—Channel5
  • ST标准库
  • 主频48MHz(外部12MHz晶振)
在这里插入图片描述

5 串口DMA接收

5.1 基本流程

串口接收流程图

5.2 相关配置

关键步骤

【1】初始化串口

【2】使能串口DMA接收模式,使能串口空闲中断

【3】配置DMA参数,使能DMA通道buf半满(传输一半数据)中断、buf溢满(传输数据完成)中断

为什么需要使用DMA 通道buf半满中断?

很多串口DMA模式接收的教程、例子,基本是使用了“空间中断”+“DMA传输完成中断”来接收数据。

实质上这是存在风险的,当DMA传输数据完成,CPU介入开始拷贝DMA通道buf数据,如果此时串口继续有数据进来,DMA继续搬运数据到buf,就有可能将数据覆盖,因为DMA数据搬运是不受CPU控制的,即使你关闭了CPU中断。

严谨的做法需要做双buf,CPU和DMA各自一块内存交替访问,即是"乒乓缓存” ,处理流程步骤应该是这样:

【1】第一步,DMA先将数据搬运到buf1,搬运完成通知CPU来拷贝buf1数据

【2】第二步,DMA将数据搬运到buf2,与CPU拷贝buf1数据不会冲突

【3】第三步,buf2数据搬运完成,通知CPU来拷贝buf2数据

【4】执行完第三步,DMA返回执行第一步,一直循环

双缓存DMA数据搬运过程

STM32F0系列DMA不支持双缓存(以具体型号为准)机制,但提供了一个buf"半满中断"

即是数据搬运到buf大小的一半时,可以产生一个中断信号。基于这个机制,我们可以实现双缓存功能,只需将buf空间开辟大一点即可。

【1】第一步,DMA将数据搬运完成buf的前一半时,产生“半满中断”,CPU来拷贝buf前半部分数据

【2】第二步,DMA继续将数据搬运到buf的后半部分,与CPU拷贝buf前半部数据不会冲突

【3】第三步,buf后半部分数据搬运完成,触发“溢满中断”,CPU来拷贝buf后半部分数据

【4】执行完第三步,DMA返回执行第一步,一直循环

使用半满中断DMA数据搬运过程

UART2 DMA模式接收配置代码如下,与其他外设使用DMA的配置基本一致,留意关键配置:

  • 串口接收,DMA通道工作模式设为连续模式
  • 使能DMA通道接收buf半满中断、溢满(传输完成)中断
  • 启动DMA通道前清空相关状态标识,防止首次传输错乱数据
左右滑动查看全部代码>>>
void bsp_uart2_dmarx_config(uint8_t *mem_addr, uint32_t mem_size)
{
   DMA_InitTypeDef DMA_InitStructure;
 
 DMA_DeInit(DMA1_Channel5); 
 DMA_Cmd(DMA1_Channel5, DISABLE);
 DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->RDR);/* UART2接收数据地址 */
 DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr; /* 接收buf */
 DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralSRC;  /* 传输方向:外设->内存 */
 DMA_InitStructure.DMA_BufferSize    = mem_size; /* 接收buf大小 */
 DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte; 
 DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;
 DMA_InitStructure.DMA_Mode      = DMA_Mode_Circular; /* 连续模式 */
 DMA_InitStructure.DMA_Priority     = DMA_Priority_VeryHigh; 
 DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel5, &DMA_InitStructure); 
 DMA_ITConfig(DMA1_Channel5, DMA_IT_TC|DMA_IT_HT|DMA_IT_TE, ENABLE);/* 使能DMA半满、溢满、错误中断 */
 DMA_ClearFlag(DMA1_IT_TC5); /* 清除相关状态标识 */
 DMA_ClearFlag(DMA1_IT_HT5);
 DMA_Cmd(DMA1_Channel5, ENABLE); 
}

DMA 错误中断“DMA_IT_TE”,一般用于前期调试使用,用于检查DMA出现错误的次数,发布软件可以不使能该中断。

5.3 接收处理

基于上述描述机制,DMA方式接收串口数据,有三种中断场景需要CPU去将buf数据拷贝到fifo中,分别是:

  • DMA通道buf溢满(传输完成)场景
  • DMA通道buf半满场景
  • 串口空闲中断场景

前两者场景,前面文章已经描述。串口空闲中断指的是,数据传输完成后,串口监测到一段时间内没有数据进来,则触发产生的中断信号。

5.3 .1 接收数据大小

数据传输过程是随机的,数据大小也是不定的,存在几类情况:

  • 数据刚好是DMA接收buf的整数倍,这是理想的状态
  • 数据量小于DMA接收buf或者小于接收buf的一半,此时会触发串口空闲中断

因此,我们需根据“DMA通道buf大小”、“DMA通道buf剩余空间大小”、“上一次接收的总数据大小”来计算当前接收的数据大小。

/* 获取DMA通道接收buf剩余空间大小 */
uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx);

DMA通道buf溢满场景计算

接收数据大小 = DMA通道buf大小 - 上一次接收的总数据大小

DMA通道buf溢满中断处理函数:

左右滑动查看全部代码>>>

void uart_dmarx_done_isr(uint8_t uart_id)
{
   uint16_t recv_size;
 
 recv_size = s_uart_dev[uart_id].dmarx_buf_size - s_uart_dev[uart_id].last_dmarx_size;

 fifo_write(&s_uart_dev[uart_id].rx_fifo, 
       (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);

 s_uart_dev[uart_id].last_dmarx_size = 0;
}

DMA通道buf半满场景计算

接收数据大小 = DMA通道接收总数据大小 - 上一次接收的总数据大小
DMA通道接收总数据大小 = DMA通道buf大小 - DMA通道buf剩余空间大小

DMA通道buf半满中断处理函数:

左右滑动查看全部代码>>>

void uart_dmarx_half_done_isr(uint8_t uart_id)
{
   uint16_t recv_total_size;
   uint16_t recv_size;
 
 if(uart_id == 0)
 {
    recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart1_get_dmarx_buf_remain_size();
 }
 else if (uart_id == 1)
 {
  recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart2_get_dmarx_buf_remain_size();
 }
 recv_size = recv_total_size - s_uart_dev[uart_id].last_dmarx_size;
 
 fifo_write(&s_uart_dev[uart_id].rx_fifo, 
       (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);
 s_uart_dev[uart_id].last_dmarx_size = recv_total_size;/* 记录接收总数据大小 */
}

串口空闲中断场景计算

串口空闲中断场景的接收数据计算与“DMA通道buf半满场景”计算方式是一样的。

串口空闲中断处理函数:

左右滑动查看全部代码>>>

void uart_dmarx_idle_isr(uint8_t uart_id)
{
   uint16_t recv_total_size;
   uint16_t recv_size;
 
 if(uart_id == 0)
 {
    recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart1_get_dmarx_buf_remain_size();
 }
 else if (uart_id == 1)
 {
  recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart2_get_dmarx_buf_remain_size();
 }
 recv_size = recv_total_size - s_uart_dev[uart_id].last_dmarx_size;
 s_UartTxRxCount[uart_id*2+1] += recv_size;
 fifo_write(&s_uart_dev[uart_id].rx_fifo, 
       (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);
 s_uart_dev[uart_id].last_dmarx_size = recv_total_size;
}

注:串口空闲中断处理函数,除了将数据拷贝到串口接收fifo中,还可以增加特殊处理,如作为串口数据传输完成标识、不定长度数据处理等等。

5.3.2 接收数据偏移地址

将有效数据拷贝到fifo中,除了需知道有效数据大小外,还需知道数据存储于DMA 接收buf的偏移地址。

有效数据偏移地址只需记录上一次接收的总大小即,可,在DMA通道buf全满中断处理函数将该值清零,因为下一次数据将从buf的开头存储。

在DMA通道buf溢满中断处理函数中将数据偏移地址清零:

void uart_dmarx_done_isr(uint8_t uart_id)
{
  /* todo */
 s_uart_dev[uart_id].last_dmarx_size = 0;
}

5.4 应用读取串口数据方法

经过前面的处理步骤,已将串口数据拷贝至接收fifo,应用程序任务只需从fifo获取数据进行处理。前提是,处理效率必须大于DAM接收搬运数据的效率,否则导致数据丢失或者被覆盖处理。

6 串口DMA发送

6.1 基本流程

串口发送流程图

6.2 相关配置

关键步骤

【1】初始化串口

【2】使能串口DMA发送模式

【3】配置DMA发送通道,这一步无需在初始化设置,有数据需要发送时才配置使能DMA发送通道

UART2 DMA模式发送配置代码如下,与其他外设使用DMA的配置基本一致,留意关键配置:

  • 串口发送是,DMA通道工作模式设为单次模式(正常模式),每次需要发送数据时重新配置DMA
  • 使能DMA通道传输完成中断,利用该中断信息处理一些必要的任务,如清空发送状态、启动下一次传输
  • 启动DMA通道前清空相关状态标识,防止首次传输错乱数据
左右滑动查看全部代码>>>
void bsp_uart2_dmatx_config(uint8_t *mem_addr, uint32_t mem_size)
{
   DMA_InitTypeDef DMA_InitStructure;
 
 DMA_DeInit(DMA1_Channel4);
 DMA_Cmd(DMA1_Channel4, DISABLE);
 DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->TDR);/* UART2发送数据地址 */
 DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr;  /* 发送数据buf */
 DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralDST;  /* 传输方向:内存->外设 */
 DMA_InitStructure.DMA_BufferSize    = mem_size;    /* 发送数据buf大小 */
 DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte; 
 DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;
 DMA_InitStructure.DMA_Mode      = DMA_Mode_Normal;   /* 单次模式 */
 DMA_InitStructure.DMA_Priority     = DMA_Priority_High;  
 DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel4, &DMA_InitStructure);  
 DMA_ITConfig(DMA1_Channel4, DMA_IT_TC|DMA_IT_TE, ENABLE); /* 使能传输完成中断、错误中断 */
 DMA_ClearFlag(DMA1_IT_TC4); /* 清除发送完成标识 */
 DMA_Cmd(DMA1_Channel4, ENABLE); /* 启动DMA发送 */
}

6.3 发送处理

串口待发送数据存于发送fifo中,发送处理函数需要做的的任务就是循环查询发送fifo是否存在数据,如存在则将该数据拷贝到DMA发送buf中,然后启动DMA传输。

前提是需要等待上一次DMA传输完毕,即是DMA接收到DMA传输完成中断信号"DMA_IT_TC"

串口发送处理函数:

左右滑动查看全部代码>>>

void uart_poll_dma_tx(uint8_t uart_id)
{
   uint16_t size = 0;
 
 if (0x01 == s_uart_dev[uart_id].status)
    {
        return;
    }
 size = fifo_read(&s_uart_dev[uart_id].tx_fifo, s_uart_dev[uart_id].dmatx_buf,
      s_uart_dev[uart_id].dmatx_buf_size);
 if (size != 0)
 {
        s_UartTxRxCount[uart_id*2+0] += size;
    if (uart_id == 0)
  {
            s_uart_dev[uart_id].status = 0x01/* DMA发送状态 */
     bsp_uart1_dmatx_config(s_uart_dev[uart_id].dmatx_buf, size);
  }
  else if (uart_id == 1)
  {
            s_uart_dev[uart_id].status = 0x01/* DMA发送状态,必须在使能DMA传输前置位,否则有可能DMA已经传输并进入中断 */
   bsp_uart2_dmatx_config(s_uart_dev[uart_id].dmatx_buf, size);
  }
 }
}
  • 注意发送状态标识,必须先置为“发送状态”,然后启动DMA 传输。如果步骤反过来,在传输数据量少时,DMA传输时间短,“DMA_IT_TC”中断可能比“发送状态标识置位”先执行,导致程序误判DMA一直处理发送状态(发送标识无法被清除)。

注:关于DMA发送数据启动函数,有些博客文章描述只需改变DMA发送buf的大小即可;经过测试发现,该方法在发送数据量较小时可行,数据量大后,导致发送失败,而且不会触发DMA发送完成中断。因此,可靠办法是:每次启动DMA发送,重新配置DMA通道所有参数。该步骤只是配置寄存器过程,实质上不会占用很多CPU执行时间。

DMA传输完成中断处理函数:

void uart_dmatx_done_isr(uint8_t uart_id)
{
  s_uart_dev[uart_id].status = 0/* 清空DMA发送状态标识 */
}

上述串口发送处理函数可以在几种情况调用:

  • 主线程任务调用,前提是线程不能被其他任务阻塞,否则导致fifo溢出
void thread(void)
{
    uart_poll_dma_tx(DEV_UART1);
    uart_poll_dma_tx(DEV_UART2);
}
  • 定时器中断中调用
void TIMx_IRQHandler(void)
{
    uart_poll_dma_tx(DEV_UART1);
    uart_poll_dma_tx(DEV_UART2);
}
  • DMA通道传输完成中断中调用
void DMA1_Channel4_5_IRQHandler(void)
{
 if(DMA_GetITStatus(DMA1_IT_TC4))
 {
  UartDmaSendDoneIsr(UART_2);
  DMA_ClearFlag(DMA1_FLAG_TC4);
  uart_poll_dma_tx(DEV_UART2);
 }
}

每次拷贝多少数据量到DMA发送buf:

关于这个问题,与具体应用场景有关,遵循的原则就是:只要发送fifo的数据量大于等于DMA发送buf的大小,就应该填满DMA发送buf,然后启动DMA传输,这样才能充分发挥会DMA性能。

因此,需兼顾每次DMA传输的效率和串口数据流实时性,参考着几类实现:

  • 周期查询发送fifo数据,启动DMA传输,充分利用DMA发送效率,但可能降低串口数据流实时性
  • 实时查询发送fifo数据,加上超时处理,理想的方法
  • 在DMA传输完成中断中处理,保证实时连续数据流

7 串口设备

7.1 数据结构

/* 串口设备数据结构 */
typedef struct
{

 uint8_t status;   /* 发送状态 */
 _fifo_t tx_fifo;  /* 发送fifo */
 _fifo_t rx_fifo;  /* 接收fifo */
 uint8_t *dmarx_buf;  /* dma接收缓存 */
 uint16_t dmarx_buf_size;/* dma接收缓存大小*/
 uint8_t *dmatx_buf;  /* dma发送缓存 */
 uint16_t dmatx_buf_size;/* dma发送缓存大小 */
 uint16_t last_dmarx_size;/* dma上一次接收数据大小 */
}uart_device_t;

7.2 对外接口

左右滑动查看全部代码>>>
/* 串口注册初始化函数 */
void uart_device_init(uint8_t uart_id)
{
   if (uart_id == 1)
 {
  /* 配置串口2收发fifo */
  fifo_register(&s_uart_dev[uart_id].tx_fifo, &s_uart2_tx_buf[0], 
                      sizeof(s_uart2_tx_buf), fifo_lock, fifo_unlock);
  fifo_register(&s_uart_dev[uart_id].rx_fifo, &s_uart2_rx_buf[0], 
                      sizeof(s_uart2_rx_buf), fifo_lock, fifo_unlock);
  
  /* 配置串口2 DMA收发buf */
  s_uart_dev[uart_id].dmarx_buf = &s_uart2_dmarx_buf[0];
  s_uart_dev[uart_id].dmarx_buf_size = sizeof(s_uart2_dmarx_buf);
  s_uart_dev[uart_id].dmatx_buf = &s_uart2_dmatx_buf[0];
  s_uart_dev[uart_id].dmatx_buf_size = sizeof(s_uart2_dmatx_buf);
  bsp_uart2_dmarx_config(s_uart_dev[uart_id].dmarx_buf, 
          sizeof(s_uart2_dmarx_buf));
  s_uart_dev[uart_id].status  = 0;
 }
}

/* 串口发送函数 */
uint16_t uart_write(uint8_t uart_id, const uint8_t *buf, uint16_t size)
{
 return fifo_write(&s_uart_dev[uart_id].tx_fifo, buf, size);
}

/* 串口读取函数 */
uint16_t uart_read(uint8_t uart_id, uint8_t *buf, uint16_t size)
{
 return fifo_read(&s_uart_dev[uart_id].rx_fifo, buf, size);
}

8 相关文章

依赖的fifo参考该文章:

通用环形缓冲区模块:

https://acuity.blog.csdn.net/article/details/78902689

9 完整源码

代码仓库:

https://github.com/Prry/stm32f0-uart-dma

串口&DMA底层配置:

左右滑动查看全部代码>>>

#include 
#include 
#include 
#include "stm32f0xx.h"
#include "bsp_uart.h"

/**
 * @brief  
 * @param  
 * @retval 
 */

static void bsp_uart1_gpio_init(void)
{
    GPIO_InitTypeDef    GPIO_InitStructure;
#if 0
 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
 
    GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_0);
    GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_0); 
 
 GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_6 | GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;
 GPIO_InitStructure.GPIO_OType  = GPIO_OType_PP;
    GPIO_InitStructure.GPIO_Speed   = GPIO_Speed_Level_3;
    GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_UP;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
#else
 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
 
    GPIO_PinAFConfig(GPIOB, GPIO_PinSource9, GPIO_AF_1);
    GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_1); 
 
 GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_9 | GPIO_Pin_10;
    GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;
 GPIO_InitStructure.GPIO_OType  = GPIO_OType_PP;
    GPIO_InitStructure.GPIO_Speed   = GPIO_Speed_Level_3;
    GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_UP;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
#endif
}

/**
 * @brief  
 * @param  
 * @retval 
 */

static void bsp_uart2_gpio_init(void)
{
 GPIO_InitTypeDef GPIO_InitStructure;
 
 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
 
 GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_1);
 GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_1);
 
 GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_2 | GPIO_Pin_3;
 GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;
 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
 GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_UP;
 GPIO_Init(GPIOA, &GPIO_InitStructure);
}

/**
 * @brief  
 * @param  
 * @retval 
 */

void bsp_uart1_init(void)
{
 USART_InitTypeDef USART_InitStructure;
 NVIC_InitTypeDef NVIC_InitStructure;
 
 bsp_uart1_gpio_init();
 
 /* 使能串口和DMA时钟 */
 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
 
 USART_InitStructure.USART_BaudRate            = 57600;
 USART_InitStructure.USART_WordLength          = USART_WordLength_8b;
 USART_InitStructure.USART_StopBits            = USART_StopBits_1;
 USART_InitStructure.USART_Parity              = USART_Parity_No;
 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
 USART_InitStructure.USART_Mode                = USART_Mode_Rx | USART_Mode_Tx;
 USART_Init(USART1, &USART_InitStructure);
 
 USART_ITConfig(USART1, USART_IT_IDLE, ENABLE); /* 使能空闲中断 */
 USART_OverrunDetectionConfig(USART1, USART_OVRDetection_Disable);
 
 USART_Cmd(USART1, ENABLE);
 USART_DMACmd(USART1, USART_DMAReq_Rx|USART_DMAReq_Tx, ENABLE); /* 使能DMA收发 */

 /* 串口中断 */
 NVIC_InitStructure.NVIC_IRQChannel         = USART1_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPriority = 2;
 NVIC_InitStructure.NVIC_IRQChannelCmd      = ENABLE;
 NVIC_Init(&NVIC_InitStructure);

 /* DMA中断 */
   NVIC_InitStructure.NVIC_IRQChannel      = DMA1_Channel2_3_IRQn;       
   NVIC_InitStructure.NVIC_IRQChannelPriority = 0
 NVIC_InitStructure.NVIC_IRQChannelCmd      = ENABLE;
   NVIC_Init(&NVIC_InitStructure);
}

/**
 * @brief  
 * @param  
 * @retval 
 */

void bsp_uart2_init(void)
{
 USART_InitTypeDef USART_InitStructure;
 NVIC_InitTypeDef NVIC_InitStructure;
 
 bsp_uart2_gpio_init();
 
 /* 使能串口和DMA时钟 */
 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);

 USART_InitStructure.USART_BaudRate            = 57600;
 USART_InitStructure.USART_WordLength          = USART_WordLength_8b;
 USART_InitStructure.USART_StopBits            = USART_StopBits_1;
 USART_InitStructure.USART_Parity              = USART_Parity_No;
 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
 USART_InitStructure.USART_Mode                = USART_Mode_Rx | USART_Mode_Tx;
 USART_Init(USART2, &USART_InitStructure);
 
 USART_ITConfig(USART2, USART_IT_IDLE, ENABLE); /* 使能空闲中断 */
 USART_OverrunDetectionConfig(USART2, USART_OVRDetection_Disable);
 
 USART_Cmd(USART2, ENABLE);
 USART_DMACmd(USART2, USART_DMAReq_Rx|USART_DMAReq_Tx, ENABLE);  /* 使能DMA收发 */

 /* 串口中断 */
 NVIC_InitStructure.NVIC_IRQChannel         = USART2_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPriority = 2;
 NVIC_InitStructure.NVIC_IRQChannelCmd      = ENABLE;
 NVIC_Init(&NVIC_InitStructure);

 /* DMA中断 */
 NVIC_InitStructure.NVIC_IRQChannel         = DMA1_Channel4_5_IRQn;       
   NVIC_InitStructure.NVIC_IRQChannelPriority = 0
 NVIC_InitStructure.NVIC_IRQChannelCmd      = ENABLE;
   NVIC_Init(&NVIC_InitStructure);
}

void bsp_uart1_dmatx_config(uint8_t *mem_addr, uint32_t mem_size)
{
   DMA_InitTypeDef DMA_InitStructure;
 
 DMA_DeInit(DMA1_Channel2);
 DMA_Cmd(DMA1_Channel2, DISABLE);
 DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART1->TDR);
 DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr; 
 DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralDST;  /* 传输方向:内存->外设 */
 DMA_InitStructure.DMA_BufferSize    = mem_size; 
 DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte; 
 DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;
 DMA_InitStructure.DMA_Mode      = DMA_Mode_Normal; 
 DMA_InitStructure.DMA_Priority     = DMA_Priority_High; 
 DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel2, &DMA_InitStructure);  
 DMA_ITConfig(DMA1_Channel2, DMA_IT_TC|DMA_IT_TE, ENABLE); 
 DMA_ClearFlag(DMA1_IT_TC2); /* 清除发送完成标识 */
 DMA_Cmd(DMA1_Channel2, ENABLE); 
}

void bsp_uart1_dmarx_config(uint8_t *mem_addr, uint32_t mem_size)
{
   DMA_InitTypeDef DMA_InitStructure;
 
 DMA_DeInit(DMA1_Channel3); 
 DMA_Cmd(DMA1_Channel3, DISABLE);
 DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART1->RDR);
 DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr; 
 DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralSRC;  /* 传输方向:外设->内存 */
 DMA_InitStructure.DMA_BufferSize    = mem_size; 
 DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte; 
 DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;
 DMA_InitStructure.DMA_Mode      = DMA_Mode_Circular; 
 DMA_InitStructure.DMA_Priority     = DMA_Priority_VeryHigh; 
 DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel3, &DMA_InitStructure); 
 DMA_ITConfig(DMA1_Channel3, DMA_IT_TC|DMA_IT_HT|DMA_IT_TE, ENABLE);/* 使能DMA半满、全满、错误中断 */
 DMA_ClearFlag(DMA1_IT_TC3);
 DMA_ClearFlag(DMA1_IT_HT3);
 DMA_Cmd(DMA1_Channel3, ENABLE); 
}

uint16_t bsp_uart1_get_dmarx_buf_remain_size(void)
{
 return DMA_GetCurrDataCounter(DMA1_Channel3); /* 获取DMA接收buf剩余空间 */
}

void bsp_uart2_dmatx_config(uint8_t *mem_addr, uint32_t mem_size)
{
   DMA_InitTypeDef DMA_InitStructure;
 
 DMA_DeInit(DMA1_Channel4);
 DMA_Cmd(DMA1_Channel4, DISABLE);
 DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->TDR);
 DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr; 
 DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralDST;  /* 传输方向:内存->外设 */
 DMA_InitStructure.DMA_BufferSize    = mem_size; 
 DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte; 
 DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;
 DMA_InitStructure.DMA_Mode      = DMA_Mode_Normal; 
 DMA_InitStructure.DMA_Priority     = DMA_Priority_High; 
 DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel4, &DMA_InitStructure);  
 DMA_ITConfig(DMA1_Channel4, DMA_IT_TC|DMA_IT_TE, ENABLE); 
 DMA_ClearFlag(DMA1_IT_TC4); /* 清除发送完成标识 */
 DMA_Cmd(DMA1_Channel4, ENABLE); 
}

void bsp_uart2_dmarx_config(uint8_t *mem_addr, uint32_t mem_size)
{
   DMA_InitTypeDef DMA_InitStructure;
 
 DMA_DeInit(DMA1_Channel5); 
 DMA_Cmd(DMA1_Channel5, DISABLE);
 DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->RDR);
 DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr; 
 DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralSRC;  /* 传输方向:外设->内存 */
 DMA_InitStructure.DMA_BufferSize    = mem_size; 
 DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte; 
 DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;
 DMA_InitStructure.DMA_Mode      = DMA_Mode_Circular; 
 DMA_InitStructure.DMA_Priority     = DMA_Priority_VeryHigh; 
 DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel5, &DMA_InitStructure); 
 DMA_ITConfig(DMA1_Channel5, DMA_IT_TC|DMA_IT_HT|DMA_IT_TE, ENABLE);/* 使能DMA半满、全满、错误中断 */
 DMA_ClearFlag(DMA1_IT_TC5);
 DMA_ClearFlag(DMA1_IT_HT5);
 DMA_Cmd(DMA1_Channel5, ENABLE); 
}

uint16_t bsp_uart2_get_dmarx_buf_remain_size(void)
{
 return DMA_GetCurrDataCounter(DMA1_Channel5); /* 获取DMA接收buf剩余空间 */
}

压力测试:

  • 1.5Mbps波特率,串口助手每毫秒发送1k字节数据,stm32f0 DMA接收数据,再通过DMA发送回串口助手,毫无压力。
  • 1.5Mbps波特率,可传输大文件测试,将接收数据保存为文件,与源文件比较。
  • 串口高波特率测试需要USB转TLL工具及串口助手都支持才可行,推荐CP2102、FT232芯片的USB转TTL工具。
1.5Mbps串口回环压力测试


原文链接:https://blog.csdn.net/qq_20553613/article/details/108367512


关注公众号,加星标,回复1024获取学习资料,每天进步一点点。


声明:

本号原创、转载的文章、图片等版权归原作者所有,如有侵权,请联系删除。

关注、点赞、在看、转发,支持优质内容! 

评论
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 80浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 48浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 110浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 79浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 88浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 166浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 76浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 81浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 72浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦