高镍三元正极材料表面包覆策略

锂电联盟会长 2024-07-21 10:30

点击左上角“锂电联盟会长”,即可关注!

电动汽车的长续航和快速充电需要高性能的锂离子电池来实现,而正极材料是其中最重要的组件之一。当前商用的锂电池正极材料主要有层状结构的钴酸锂、三元材料、尖晶石结构的锰酸锂以及橄榄石结构的磷酸铁锂。

其中,高镍三元正极材料在能量密度上具有巨大优势,是动力电池市场的主导材料。但高镍三元材料仍存在晶格内镍锂混排程度大、表面残碱量高和电解液腐蚀严重等问题,阻碍了其大规模产业化应用。

为了解决上述问题,研究者们提出了各种改性策略,主要包括表面包覆、晶内掺杂和晶体形貌控制,这些策略在改善三元材料电化学性能方面展现出了良好的效果。其中,表面包覆改性是最常用、最有效的方法之一。

表面包覆改性通常是通过物理或化学的方法,在高镍三元正极材料颗粒的表面附着一层“保护层”,并结合后续的热处理过程使得保护层与电极材料的结合更加紧密。保护层的存在可以很好的阻止电极材料与电解液的直接接触,减少HF对电极材料的侵蚀,并有效降低界面副反应的发生;同时保护层在形成过程中还会与高镍三元正极材料表面残留的碱性物质反应,减少电极材料表面的碱性残留;电化学活性的保护层还能够很大程度改善电极材料的界面转移阻抗。

目前,高镍三元材料表面改性所选的包覆材料主要有电化学惰性材料、离子电导性材料和电子电导性材料,并在此基础上发展到复合包覆。

电化学惰性材料

电化学惰性材料主要有金属氧化物、金属氟化物和金属磷酸盐等,它们能有效阻隔三元正极材料和电解质之间的直接接触,有助于防止HF的侵蚀和界面副反应的发生。

金属氧化物包覆材料

金属氧化物包覆材料主要有Al2O3、ZrO2、TiO2、WO3等。金属氧化物包覆层可以与HF反应转化为金属氟化物,达到消除HF的目的,从而降低电解液的酸性,提升电极的结构稳定性。但是,这些氧化物的Li+传输速率和电子导电性相对较低,会造成包覆界面电子和离子传输阻力的增加。
Al2O3是最常用的金属氧化物包覆材料。这种包覆层能有效减轻三元材料的电极-电解液界面副反应的发生,使材料在高压循环下的电化学性能得到显著的提升。

非金属氧化物包覆材料

SiO2由于具有电化学活性低、储量丰富、环境友好、价格低廉等优点而备受人们关注。其同样可以与HF反应,保护正极颗粒免受电解液的侵蚀,缓解循环过程中的表面结构退化。此外,SiO2的特殊热性能可以使正极材料具有良好的热稳定性。

金属氟化物包覆材料

虽然氧化物能够抵御HF对电极材料侵蚀,提升电极材料的表面稳定性,但是氧化物涂层材料会与HF反应产生电化学惰性的副产物,沉积在电极材料表面并降低材料的界面运输速率,进一步导致材料的电化学循环稳定性下降。而氟化物在HF中的表现更为稳定。
最主要的金属氟化物包覆材料是AlF3。AlF3包覆层可以通过缓解晶格膨胀来抑制循环过程中的锂镍混排和锂损失,还可以抑制高镍三元材料在储存过程中表面残碱的产生,提高高镍三元材料与电解质之间的界面稳定性。

金属磷酸盐包覆材料

磷酸盐中PO43-和金属离子之间具有很强的化学键,能够阻碍电极材料和电解质之间的反应,从而提高材料的稳定性。金属磷酸盐包覆材料主要有AlPO4、MnPO4等。金属磷酸盐在界面附近有转化成非晶态的趋势,这个过程可抑制相变的发生,使三元材料内部和界面处的结构更加稳定,提高材料的循环稳定性。

离子/电子电导性材料

电化学惰性包覆层通过物理屏障保护正极颗粒内部,但离子绝缘性导致Li+传输受阻,尤其在大电流下降低倍率性能。优异的表面包覆层不仅能通过阻断电解质和电极表面上高活性阳离子之间的物理接触来解决不稳定性问题,还能稳定电极中晶格氧离子,改善Li+的迁移率。采用离子导体作为包覆层可实现物理保护和促进离子传输。

离子电导性材料

高镍三元正极材料的倍率性能较差,主要源于Li+在层状结构中的二维扩散通路和阻碍Li+扩散的锂镍混排,这些因素限制了它们在高功率密度领域的应用。
LiAlO2具有优异的Li+传输性能。LiAlO2包覆层不仅可以稳定正极和电解质之间的界面结构,而且由于其提供了良好的Li+脱嵌过程的传输网络,提高了结构稳定性并防止核心材料受到电解液的侵蚀。
Li2TiO3具有较宽的工作电压、较高的热稳定性和快速的Li+传输动力学,被认为是有效的用于三元正极表面修饰的包覆层材料。

电子电导性材料

石墨烯具有大的比表面积、优异的电子导电性和机械性能,其化学性质稳定。石墨烯的引入可以有效地提高电极材料表面的电子电导率、电容性能等。

复合包覆材料

电子电导性材料和金属氧化物复合包覆

通过电子电导性材料和金属氧化物复合包覆层可以同时改善正极材料的导电性和结构稳定性。在这种方法中,其中一种成分可以通过保护表面免受不需要的副反应来提高循环性能,而另一种成分则提升了电子导电性能,提高了放电比容量。

离子电导性和电子电导性材料复合包覆

在材料表面构建一种具有高离子和电子导电性的双功能包覆层,可以提高电池在循环过程和离子储存过程中的稳定性。本体材料、离子包覆材料、电子包覆材料和电解质共同形成了四相正极-电解质界面,这对容量保持率的大幅度提高起到了关键作用。

离子电导性材料和金属氧化物复合包覆

金属氧化物可以保护材料免受电解液的侵蚀,金属氧化物包覆层可以提高材料界面结构的稳定性,提升电池的循环性能。离子电导性材料包覆层可以增强Li+的传输能力,提高电池的倍率性能。离子电导性材料和金属氧化物复合包覆层可以同时提高电池的容量保持率和倍率性能。

表面改性方法

常用的表面改性方法有:
(1)常规化学涂覆方法,例如共沉淀法、溶胶-凝胶法、水热法和固态法;
(2)传统沉积法,例如喷雾干燥法、脉冲激光沉积(PLD)、物理气相沉积(PVD)和化学气相沉积(CVD);
(3)先进的沉积方法,例如原子层沉积(ALD)和分子层沉积(MLD)。
其中化学涂覆方法由于其简单高效,工艺成本低廉,已广泛用于正极材料中以实现表面包覆。通常情况下,原涂层材料通常不是涂层的最终化学组成。在该类方法下,涂覆结束后仍然需要进一步的煅烧,最终形成具有预期化学式的涂层。
在这些包覆手段中,主要的差异在于混合方式和包覆原材料的状态。
固相法是最容易实现包覆的方法,因为其仅需要将包覆材料与正极前驱体和锂源或正极粉末混合,然后进行煅烧,但是难以控制包覆层的厚度和均匀性。
溶胶-凝胶包覆法是将包覆原料与正极前驱体或正极粉体以溶胶状态混合,由于溶胶溶液的低流动性和随后的凝胶状态,有利于包覆材料的均匀分布。煅烧后,其加热温度通常低于固态法中的加热温度,可以在正极颗粒的表面上形成相对均匀的涂层。
水热包覆法是基于水热反应的工作机理,将包覆原料与正极原料或前驱体混合,在溶液状态下于低温下发生化学反应,得到具有包覆层的正极材料。
原子层沉积(ALD)技术是一种先进的构建包覆层技术。此技术可以在具有较高比表面积的基材上沉积薄膜,即使几何形状不规则,也可以精确控制其沉积厚度,保证沉积的均匀性。
上述高镍三元材料的表面包覆改性方法能够显著改善材料的性能,但是仍然存在改进的空间:
(1)球磨等固相混合方式在实现低用量的均匀包覆方面难度较大;
(2)液相水解等采用原料包裹主体材料的方式对于实现高镍三元材料的均匀包覆特别是单晶材料存在进一步的优化空间;
(3)ALD等原子级别的技术由于对成本和工艺参数要求较高使得规模化应用难度极大。

小结




由于高镍三元材料存在晶格内镍锂混排程度大、表面残碱量高和电解液腐蚀严重等问题,阻碍了其大规模产业化应用。包覆是高镍三元正极材料表面改性的重要方法。包覆材料不仅可以保护材料表面和提高材料的结构稳定性,还可以提高离子或电子的传输能力,提高材料的电化学性能。常用的包覆材料有电化学惰性材料、离子电导性材料、电子电导性材料。在此基础上发展到复合包覆,常见的复合包覆有电子电导性材料和金属氧化物复合包覆、离子电导性和电子电导性材料复合包覆、离子电导性材料和金属氧化物复合包覆。常见的包覆方式主要有干法、湿法以及原子气相沉积技术等方法,但是仍然存在改进的空间。如何实现高镍三元材料完整、均匀、可控的表面改性具有十分重要的理论和应用价值。


参考来源:
1.李静等《锂离子电池高镍三元正极材料表面改性研究进展》
2.郑向益《层状高镍正极材料改性策略及其储锂性能研究》
3.曾增《高镍三元正极材料的制备及改性研究》
4.陈金敏《高镍多晶 LiNi0.8Co0.1Mn0.1O2正极材料的包覆改性及其电化学性能研究》
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 111浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 49浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 56浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 87浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 155浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 102浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 55浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 92浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 118浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 120浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 214浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦