Joule:将“生物组学”引入电池系统,解析电解液和CEI的关系

锂电联盟会长 2024-07-20 10:30

点击左上角“锂电联盟会长”,即可关注!

【研究背景】

电动飞机需要具备高能量密度的电池,以满足其载货、续航以及起飞和着陆时的高功率需求。这种对功率和能量的双重要求,给电解液的开发带来了巨大的挑战。目前,从电解液的离子簇及其界面活性角度出发,将混合阴离子电解液中的阴离子、配位溶剂和非配位溶剂结合起来,以指导界面相合成的研究仍然较少。组学是一门识别和量化分子过程的学科。将组学的概念应用于电池系统的研究,通过各种分析方法描述电解液与电极之间相互作用所产生的界面相的结构、功能和演变,将会加速电动飞机电池电解液的开发进程。

【内容简介】

本文将组学技术应用于电池系统的研究,重点分析了NMC811电池在高功率和高电压循环条件下,使用混合阴离子局部超浓缩电解液(LSCE)时的结构、功能及界面相的演变。研究发现,性能最佳的电解液所形成的CEI化学成分趋于一致,表现出高含量的氟醚和低含量的LiF。这些非典型的CEI能够更有效地抑制漏电流、阴极腐蚀和阴极断裂,从而延长电池寿命。使用50μm厚的锂箔、半固态NMC811电极和贫电解液组装的软包电池,在电动垂直起降过程中,经过100多个循环后显示出卓越的功率保持性能。

【研究结果】

探索混合阴离子LSCE的化学空间

图1. 用于电动飞机大功率和高电压电池的混合阴离子局部超浓缩电解液


在混合阴离子局部超浓缩电解液(LSCE)中综合考虑了多个方面,以制造适用于电动飞机的高能量密度和高功率电池(图1C)。我们的混合阴离子LSCE由LiFSI与LiBF4 (FB91)、LiClO4 (FC91)、LiDFOB(FD91)、LiOTf(FO91)、LiPF6 (FP91)或LiTFSI(FT91)结合制成,按LiFSI:盐:DME: TTE= 0.9:0.1:2:1.2摩尔比混合。拉曼光谱证实,在LSCEs中混合阴离子会产生含有FSI-的接触离子对(CIPs),离子和溶剂的聚集体(AGG);这些波长不同于稀电解液中游离FSI-的特征波长717 cm-1。几乎未检测到游离的二甲醚,游离二甲醚在高电压下会氧化生成自由基阳离子,从而限制电解液的稳定性。通过与Li+配位来降低二甲醚的活性可以提高电解液的稳定性。混合阴离子LSCE提高了电解液降解的起始电位(LiClO4 < LiOTf ≈ LiTFSI < LiPF6 < LiDFOB < LiBF4)。

混合阴离子LSCE与高镍NMC阴极的兼容性

通过多种策略评估了混合阴离子LSCE与NMC811阴极的兼容性,旨在了解阴极的特异性相互作用以及阳极-阴极对电解液高压降解的影响。在首次充电的12小时内监测了Li|NMC811电池的漏电流。与只含LiFSI的LSCE(F100)相比,含有LiFSI和LiClO4或LiDFOB(FC91或FD91)的混合阴离子LSCE在稳定状态下显示出较低的漏电流;而其他混合阴离子LSCE则显示出较高的漏电流。通过泄漏电流容量量化电解液在形成过程中于规定电位下的降解程度。与单独使用LiFSI的单阴离子LSCE相比,混合阴离子LSCE可将电解液降解程度降低达29%。

图2. 单阳离子和混合阳离子 LSCE 在高压下与 NMC811 的兼容性


为了评估CEI的完整性,提取形成CEI层的阴极并与原始阴极组装成对称电池,研究了100个循环的容量保持率(图2A)。采用FD91的Li|NMC811电池中提取的阴极保留了更多的储存电荷。使用FC91的对称电池也同样稳定,而其他电池则显示出持续的锂库存损失。这表明,以LiFSI和LiClO4或LiDFOB为的混合阴离子LSCE能迅速在带高电位电荷的NMC811阴极颗粒上形成离子导电但电子钝化的CEI层。

混合阴离子LSCE生成的CEI层的演变和完整性

为了解CEI层随时间的演变和完整性,对形成CEI层的Li|NMC811电池进行了检测,并进一步施加了1mA cm-2的充电电流密度和6mA cm-2的大功率放电电流密度。经过50个循环且静置24小时,在没有外加电位的情况下(图2B)研究了CEI层的钝化特性。单独使用或与LiBF4结合使用LiFSI的LSCE电池电压迅速下降。使用FC91、FD91和FO91的电池对Li/Li+显示出4.30V的稳定电压,而使用FP91和FT91的电池则经历了缓慢的电压衰减。不断重复这一过程,直到电池显示出快速电压衰减或电池表现出不变的稳定性。FC91和FD91表现出色,其总体衰减小于80mV,衰减率小于3.5mV h-1。除FC91和FD91外,一旦电压迅速衰减,电压衰减值低于放电锂离子电池的平衡电压(约3.2V)。这表明NMC811正在进一步化学还原。阴极在静止期电压衰减之前一直能充电到预期的容量和电压。这种可逆性表明,内部氧化还原穿梭机制是化学还原的根源。如果内部氧化还原穿梭是由NMC811生成的电解液中的金属介导的,那么CEI在防止NMC腐蚀方面的作用将比预期更大。

高功率和高电压循环下NMC811锂电池性能

发现含有 LiFSI 和 LiClO4 或LiDFOB 的混合阴离子 LSCE 在 NMC811充电至 4.35V 时,会形成离子导电但电子钝化的CEI层。这些CEI层阻断了与电解液分解和内部氧化还原穿梭有关的漏电流。与稀电解液相比,采用混合阴离子 LSCE 的锂金属阳极寿命更长,即使在高功率循环条件下,锂消耗率也仅为10.48-14.95 μAh cm-2cycle-1。为了研究这些现象和行为在电动飞机用锂离子电池中的应用,测试了电池在固定充电电流密度为1 mA cm-2的情况下,放电电流密度在1-9 mA cm-2之间的功率性能。单阴离子和混合阴离子LSCE表现出相似的倍率性能。稀电解液则显示了有限的功率性能。

在长循环实验中发现FC91和FD91在高功率运行的NMC811锂电池中的优势可持续(图2C)。采用FC91的电池在充电至4.2V时,经过500个循环后容量保持在90%以上;在充电至4.35V时,容量保持在70%以上。同样,使用FD91的电池在500个循环后,当充电至4.2V时,容量保持率为70%;当充电至4.35V时,容量保持率为70%。这些结果与使用F100组装的电池形成鲜明对比。还发现,LiBF4、LiOTf、LiPF₆和LiTFSI在混合阴离子LSCE中的表现较差,与它们无法对NMC811进行电子钝化相一致(图2A)。从充放电曲线中可以看出,FC91和FD91的区域电阻(ASR)上升最慢(图2D)。比较了采用FC91和FD91 LSCE的NMC811电池与采用标准电解液的电池性能(图2E)。几种参比电解液与混合阴离子LSCE相比,在放电时显示出更低的容量保持率。

综合这些数据,可以得出以下结论:对于需要高放电功率和高充电电压的电动飞机用NMC811电池而言,仅使用LiFSI 以及稀释或浓缩双盐电解液的传统的LSCE存在长期阻抗升高的问题。特定的混合阴离子 LSCE(如 FC91 和 FD91)在这些方面表现出显著优势。这种性能差异与阴极和阳极的稳定性以及钝化效果密切相关。如果在使用 FC91 和 FD91 的 NMC811 电池中阳极-阴极串扰得到缓解,循环寿命延长,这些优势可以在锂库存短缺、N/P 比更低的高能量密度电池中得到应用。为了验证这一假设,组装了负载为14 mg/cm2的50 μm厚锂和NMC的Li|NMC811电池,分别包含单盐或混合盐LSCE(F100、FC91 或 FD91),并在充电电流密度为1 mA/cm2和放电电流密度为6 mA/cm2的条件下进行循环测试(图 2)。结果表明,使用 FC91 和 FD91 的电池在循环500次后容量保持率分别为53%和52%,而对照电池(使用 F100)在循环300次后容量保持率为31%,并且在循环500次后容量损失最大。通过这些实验,含有 LiFSI 和 LiClO4或 LiDFOB 的混合阴离子 LSCE 为设计用于高功率和高能量密度的Li|NMC811电池提供了一条有前途的途径,能够持续对阳极和阴极进行电子钝化,而这一效果与N/P比无关。

NMC811 锂电池阳极-阴极串扰的起源

图3. 使用 LSCE循环过程中 Li|NMC811 全电池的降解行为


为了探究阳极-阴极串扰及其导致的电池内阻(ASR)增加(电池失效的预兆)起源,对在第100次循环后充电至4.35 V截止电压的Li|NMC811电池进行了拆解。对于使用单一阴离子F100的电池锂阳极积累了大量富含FSI-降解黑色物。SEM/ EDX分析显示出包括镍在内的过渡金属。这一观察结果与先前报道一致,即阳极形成SEI的同时,阴极中的过渡金属会溶解。提取F100阳极重建的NMC811电池几乎恢复了全部容量,而使用阴极重建的电池容量则继续下降。这表明,在Li|NMC811电池中,容量损失和电池失效主要由阴极降解决定。使用FIB-SEM对使用F100、FC91或FD91作为LSCE(图3A-3D)的Li|NMC811电池在第250次循环时的NMC811阴极横截面进行了研究。在F100电池中观察到次生NMC颗粒广泛断裂成亚微米级的原生颗粒(图3B)。这解释了这些电池容量损失的原因:随着时间推移,颗粒断裂最初导致ASR增加,进而导致电子隔离和容量急剧下降。阴极断裂也解释了我们观察到的F100的高自放电率,因为新的表面积不断暴露。在自放电过程中,电解液的降解会在原生颗粒之间的材料堆积,产生拉伸应力,引发裂纹并沿晶界传播,导致进一步断裂和电子隔离。与此形成鲜明对比的是,使用FC91和FD91循环的NMC811颗粒没有断裂迹象(图3C和3D)。这解释了为什么使用FC91和FD91的电池在高电压循环和高功率放电时,ASR上升缓慢且容量保持率高。


为深入了解电解液成分变化如何影响CEI及其对阴极完整性的影响,开发了一种数据驱动的组学框架。利用XPS对从单阴离子和混合阴离子LSCE中提取的CEI进行了化学多样性表征(图3E-3G)。通过对XPS数据进行解卷积,并根据已知标准对特定化学组分进行分配,从整体上了解了每种电解液的“间相组”,并将其与生物系统中的基因组、蛋白质组、代谢组等进行了类比(图4A)。在XPS表征过程中进行的深度剖析以及对CEI化学性质进行的类似分配,进一步说明了不同物质在电池内的整个演化过程中如何促进CEI的形成。

图4. 用组学方法了解CEI的结构、功能、起源和演化


以生物学家的语言,将单阴离子LSCE(F100)定义为“野生型”,对数据进行相应的归一化处理,并评估CEI的特定化学成分的 “上调-upregulated”、“下调-downregulated”或保持不变。CEI化学键上调和下调的阵列就像指纹一样,可以直观地显示它们之间的差异或相似性。有趣的是,两种能使CEI钝化并延长Li|NMC811电池循环寿命的混合阴离子LSCE(FC91和FD91)具有相似的上调和下调化学功能阵列(图4B),与其他产生非钝化CEI的混合阴离子LSCEs明显不同(图4C)。尽管野生型F100和这两种混合离子LSCE的F原子含量范围很窄(22.7%-30.7%),但观察到CEI中Li-F向C-F显著转变。混合阴离子LSCE的CEI中,与C-F键合的F上调(从F100中的11.3%上升到FC91中的17.3%和FD91中的29.3%)的同时,在C 1s XPS数据中也发现了C-F2键的上调(从F100中的6.3%上升到FC91中的8.0%和FD91中的12.6%)和C-C键的上调(从F100的8.9%上升到FC91的12.7%和FD91的16.2%)(图4D)。这些键是FSI⁻阴离子和TTE的特有产物,根据它们的基本氧化路径(图4E),上调和下调趋势表明了FSI⁻和TTE在生成CEI过程中的相对活性。在NMC表面,FSI⁻氧化生成的CEI很快达到稳定状态,FSI⁻阴离子和TTE之间会根据其相对活性发生竞争性氧化。使用单阴离子LSCE时,FSI⁻的活性较高,因此FSI⁻主导的氧化作用会产生非钝化的富含LiF的CEI。而在含有LiFSI和LiClO4或LiDFOB的混合阴离子LSCE中,TTE的活性较高,从而通过TTE主导的氧化作用形成钝化的富含碳氟化合物的CEI(图4F)。此外,相对于FSI⁻,混合阴离子LSCE中TTE分解增强所产生的CEI成分可防止阴极腐蚀,从而无限期地推迟裂纹的发生(图3C和3D)。组学框架提供了一种可量化的方法来理解CEI成分的差异,这些差异反映了阴离子和溶剂在电极-电解液界面上的活性变化。通过混合阴离子LSCE,可以更精确地定制阴极的FSI⁻和TTE活性,从而提供了一条CEI工程路线,以稳定锂金属电池的阴极,防止为电动飞机设计的电池在高压下的降解(图4F)。

图5. 使用优化的混合负离子 LSCE 循环的高容量软包电池执行真实的 eVTOL 任务


为了验证组学框架是否为电动飞机的电解液设计提供了足够的指导,组装了高容量Li|NMC811软包电池,并通过电动垂直起降(eVTOL)相关的实际任务对其进行了测试(图5A)。电池级能量密度为440 Wh kg-1(图5B)。在评估电动垂直起降飞行任务中的软包电池性能时,监测功率衰减更重要。FD91作为混合阳离子LSCE在极端贫液条件下表现优异,功率衰减小于20%(图5C)。FD91能够通过形成更钝化和更稳定的CEI来减缓纽扣电池和袋装电池的阻抗上升,这证明了组学框架能够基于数据和故障分析为新兴应用提供非常先进和非显而易见的电解液。

【总结】

即使电池化学成分类似,其电解液也可能无法互换,因为电池的失效机制取决于电池结构和整个生命周期内的功率需求。对于高功率应用,无论是否使用锂金属阳极,混合阴离子LSCE都能解决高能量密度电池中最关键的失效问题。在未来的混合阴离子LSCE迭代中,这些技术和其他相关技术将被用于更多种电池电解液的开发。此外,希望组学技术能成为一个普遍适用的框架,从间相结构、功能及不同电池化学成分演变的角度,指导人们了解电池的性能和故障。

Youngmin Ko, Michael A. Baird, Xinxing Peng, Tofunmi Ogunfunmi, Young-Woon Byeon, Liana M. Klivansky, Haegyeom Kim, Mary C. Scott, John Chen, Anthony J. D’Angelo, Junzheng Chen, Shashank Sripad, Venkatasubramanian Viswanathan, Brett A. Helms, Omics-enabled understanding of electric aircraft battery electrolytes, Joule, 2024, ISSN 2542-4351, https://doi.org/10.1016/j.joule.2024.05.013.

https://www.sciencedirect.com/science/article/pii/S2542435124002411

相关阅读:

锂离子电池制备材料/压力测试

锂电池自放电测量方法:静态与动态测量法

软包电池关键工艺问题!

一文搞懂锂离子电池K值!

工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!

揭秘宁德时代CATL超级工厂!

搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!

锂离子电池生产中各种问题汇编

锂电池循环寿命研究汇总(附60份精品资料免费下载)


锂电联盟会长 研发材料,应用科技
评论
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 782浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 280浏览
  • 随着AI大模型训练和推理对计算能力的需求呈指数级增长,AI数据中心的网络带宽需求大幅提升,推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件,主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、LWDM)。按照传输模式,光模块可分为并行和波分两种类型,其中并行方案主要应用在中短距传输场景中成本
    hycsystembella 2025-01-25 17:24 429浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 1212浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 329浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 234浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 311浏览
  • 前篇文章中『服务器散热效能不佳有解吗?』提到气冷式的服务器其散热效能对于系统稳定度是非常重要的关键因素,同时也说明了百佳泰对于散热效能能提供的协助与服务。本篇将为您延伸说明我们如何进行评估,同时也会举例在测试过程中发现的问题及改善后的数据。AI服务器的散热架构三大重点:GPU导风罩:尝试不同的GPU导风罩架构,用以集中服务器进风量,加强对GPU的降温效果。GPU托盘:改动GPU托盘架构,验证出风面积大小对GPU散热的影想程度。CPU导风罩:尝试封闭CPU导风罩间隙,集中风流,验证CPU降温效果。
    百佳泰测试实验室 2025-01-24 16:58 183浏览
  • 不让汽车专美于前,近年来哈雷(Harley-Davidson)和本田(Honda)等大型重型机车大厂的旗下车款皆已陆续配备车载娱乐系统与语音助理,在路上也有越来越多的普通机车车主开始使用安全帽麦克风,在骑车时透过蓝牙连线执行语音搜寻地点导航、音乐播放控制或免持拨打接听电话等各种「机车语音助理」功能。客户背景与面临的挑战以本次分享的客户个案为例,该客户是一个跨国车用语音软件供货商,过往是与车厂合作开发前装车机为主,且有着多年的「汽车语音助理」产品经验。由于客户这次是首度跨足「机车语音助理」产品,因
    百佳泰测试实验室 2025-01-24 17:00 191浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 183浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 469浏览
  • 项目展示①正面、反面②左侧、右侧项目源码:https://mbb.eet-china.com/download/316656.html前言为什么想到要做这个小玩意呢,作为一个死宅,懒得看手机,但又想要抬头就能看见时间和天气信息,于是就做个这么个小东西,放在示波器上面正好(示波器外壳有个小槽,刚好可以卡住)功能主要有,获取国家气象局的天气信息,还有实时的温湿度,主控采用ESP32,所以后续还可以开放更多奇奇怪怪的功能,比如油价信息、股票信息之类的,反正能联网可操作性就大多了原理图、PCB、面板设计
    小恶魔owo 2025-01-25 22:09 561浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 449浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 975浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦