发射机的EVM仿真(旧文重发)

原创 加油射频工程师 2024-07-19 13:13

动动手指,关注公众号并加星标哦

(1)

以下是仿真验证目标。

需要先理解师姐给的这幅图中每一项指标的意思。因为要对系统链路建模,除了知道大概框架之外,还需要知道每个器件的具体性能。

(2)

首先第一项,标题为Phase Noise Int。

这里,又可以复习一下相噪的概念。

一个理想的信号,可以用下式进行表示:

但是,在现实世界中,信号是这样的:

其中,A(t)代表幅度噪声,通常可忽略;θ(t)表示相位噪声。

L ( f )的单位是rad^2/Hz,对其取10*log(),即得到我们常见的dBc/Hz。


相噪可以用指定偏移频率处的相噪来表示,也可以用指定带宽内的积分RMS噪声表示,比如下面的相噪曲线图所示。

假设fmin,fmax分别是积分带宽的下限和上限。

那么:

相噪曲线图中的数值如下图:

RMS noise:  3.23258 mrad,185.213 mdeg

Intg Noise:-52.8193 dBc/19.69 MHz

用excel列出上面的公式,来复算一下上面的数值,完全符合。

再回到验证目标图中的第一项,即:

对应的rad值为:

积分带宽是1K~10MHz,通过小软件,来拟合出一种相噪的可能。

(3)

LO leakage:

LOL=-33dBc

即本振泄露到输出端的大小,这个指标,在现在用的仿真模板中,用一个信号源来模拟。

(4)

IQ Gain and Phase Imbalance

IR = -45.5dBc

因为IQ信号增益和相位的不平衡,会导致边带抑制变差,但是IR这个值是结果,需要拟合出IQ 增益和相位的不平衡的程度,才能在ADS里面进行建模。

如下图所示的直接变频发射机,理想情况下,即IQ完全匹配(增益失配和相位失配都为0)时,当输入I和Q信号分别为V0cos(win*t)和V0sin(win*t)时,可以得到输出信号的表达式为:

但是,当存在增益失配和相位失配时,输出会变为:

其中,上图中第一个红框中,表示幅度失配;第二个红框,表示相位失配。

所以,IR即是不想要的边带wc-win上的功率与有用边带wc+win的功率的比值,即:

用excel来模拟一下上述公式,来拟合出IR=-45.5dBc时,对应的幅度和相位失配。因为用的仿真模板,加入幅度失配比较容易,所以按下图进行设置,仿真出来的IR结果,与理论计算吻合。

(5) 

IMD3=-38 dBc,可以估算出整机的三阶互调截点。

假设输出功率是15dBm,那么输出三阶互调截点约为34dBm,这个是在输入信号比较小的时候,出来的结果。如果信号使得放大器进入了一点点非线性的话,会有少许的差别。

所以,对放大器的TOI调整了一下,变为34.6dBm,使得仿真出来的结果,在输出功率为15dBm时,IMD3=-38dBc。

(6)

Band Noise:-50dBc@1KHz~20MHz。

设置链路的噪声系数,使得带内噪声为-50dBc。通过HB仿真,来确认设置的正确性。

(7)

现在开始仿真了哈。

首先,调制是16QAM,把symbolrate设置为14.44MHz。

仿真出来的结果,和理论计算的差一点,这边是0.022,理论计算是0.027。(也有一部分带外噪声计入带内了,因为ENV计算的是时域,所以带内的EVM,可能比0.022还要小一点)。

(8)

如果用射频层面的调制信号仿真的话,流程是这么一个流程。

参考文献:

[1]  TI应用文档:Impact of PLL Jitter to GSPS ADC's SNR and

Performance Optimization

[2] David M. Pozar,Microwave Engineering

[3] 相噪与抖动转换的小工具:Abracon | Phase Noise Calculator

https://abracon.com/phase-noise-and-jitter-calculator

[4]razavi, 射频微电子

完结接收机课程吆喝处哈(已在平台上购买的同学,加我微信,领课件资料哈!)

想了解接收机的底层理论知识,可以选择这门课;

想了解ADS的系统仿真,可以选择这门课;

想了解SystemVue的系统仿真,可以选择这门课。


每个分指标的计算后面,都跟着一个仿真验证。所有指标都分配完了以后,还会有一个整体链路的仿真。

整体链路仿真,还分单音时候的验证+调制信号的验证;ADS仿完,再用SystemVue走一遍。

这些仿真步骤,该采用什么模板,各个参数该怎么设置,该用什么等价标准来判断,都是我花了很长时间探索,才联通起来的。

我觉得大概率是全网独一份,因为这些都是我结合软件自带的help文件和模板,再结合项目,一点一点探索出来的,有很多自己的想法在里面。

想报名的同学,可以海报底部扫码哈!



☜左右滑动查看更多

Slide for more photos


评论 (0)
  •     根据 IEC术语,瞬态过电压是指持续时间几个毫秒及以下的过高电压,通常是以高阻尼(快速衰减)形式出现,波形可以是振荡的,也可以是非振荡的。    瞬态过电压的成因和机理,IEC 60664-1给出了以下四种:    1. 自然放电,最典型的例子是雷击,感应到电力线路上,并通过电网配电系统传输,抵达用户端;        2. 电网中非特定感性负载通断。例如热处理工厂、机加工工厂对
    电子知识打边炉 2025-04-07 22:59 67浏览
  • 在万物互联时代,智能化安防需求持续升级,传统报警系统已难以满足实时性、可靠性与安全性并重的要求。WT2003H-16S低功耗语音芯片方案,以4G实时音频传输、超低功耗设计、端云加密交互为核心,重新定义智能报警设备的性能边界,为家庭、工业、公共安防等领域提供高效、稳定的安全守护。一、技术内核:五大核心突破,构建全场景安防基座1. 双模音频传输,灵活应对复杂场景实时音频流传输:内置高灵敏度MIC,支持环境音实时采集,通过4G模块直接上传至云端服务器,响应速度低至毫秒级,适用于火灾警报、紧急呼救等需即
    广州唯创电子 2025-04-08 08:59 88浏览
  •     在研究Corona现象时发现:临界电压与介电材料表面的清洁程度有关。表面越清洁的介电材料,临界电压越高;表面污染物越多的地方,越容易“爬电”。关于Corona现象,另见基础理论第007篇。    这里说的“污染物”,定义为——可能影响介电强度或表面电阻率的固体、液体或气体(电离气体)的任何情况。    IEC 60664-1 (对应GB/T 16935.1-2023) 定义了 Pollution Degree,中文术语是“污染等
    电子知识打边炉 2025-04-07 22:06 58浏览
  • 贞光科技作为三星电机车规电容代理商,针对电动汽车领域日益复杂的电容选型难题,提供全方位一站式解决方案。面对高温稳定性、高可靠性、高纹波电流和小型化等严苛要求,三星车规电容凭借完整产品矩阵和卓越技术优势,完美满足BMS、电机控制器和OBC等核心系统需求。无论技术选型、供应链保障、样品测试还是成本优化,贞光科技助力客户在电动汽车产业高速发展中占据技术先机。在电动汽车技术高速发展的今天,作为汽车电子系统中不可或缺的关键元器件,电容的选型已成为困扰许多工程师和采购人员的难题。如何在众多参数和型号中找到最
    贞光科技 2025-04-07 17:06 59浏览
  •   工业自动化领域电磁兼容与接地系统深度剖析   一、电磁兼容(EMC)基础认知   定义及关键意义   电磁兼容性(EMC),指的是设备或者系统在既定的电磁环境里,不但能按预期功能正常运转,而且不会对周边其他设备或系统造成难以承受的电磁干扰。在工业自动化不断发展的当下,大功率电机、变频器等设备被大量应用,现场总线、工业网络等技术也日益普及,致使工业自动化系统所处的电磁环境变得愈发复杂,电磁兼容(EMC)问题也越发严峻。   ​电磁兼容三大核心要素   屏蔽:屏蔽旨在切断电磁波的传播路
    北京华盛恒辉软件开发 2025-04-07 22:55 120浏览
  • 在全球电子产业面临供应链波动、技术迭代和市场需求变化等多重挑战的背景下,安博电子始终秉持“让合作伙伴赢得更多一点”的核心理念,致力于打造稳健、高效、可持续的全球供应链体系。依托覆盖供应商管理、品质检测、智能交付的全链路品控体系,安博电子不仅能确保电子元器件的高可靠性与一致性,更以高透明的供应链管理模式,助力客户降低风险、提升运营效率,推动行业标准升级,与全球合作伙伴共同塑造更具前瞻性的产业生态。动态优选机制:构建纯净供应链生态安博电子将供应商管理视为供应链安全的根基。打造动态优选管控体系,以严格
    电子资讯报 2025-04-07 17:06 65浏览
  • 在人工智能技术飞速发展的今天,语音交互正以颠覆性的方式重塑我们的生活体验。WTK6900系列语音识别芯片凭借其离线高性能、抗噪远场识别、毫秒级响应的核心优势,为智能家居领域注入全新活力。以智能风扇为起点,我们开启一场“解放双手”的科技革命,让每一缕凉风都随“声”而至。一、核心技术:精准识别,无惧环境挑战自适应降噪,听懂你的每一句话WTK6900系列芯片搭载前沿信号处理技术,通过自适应降噪算法,可智能过滤环境噪声干扰。无论是家中电视声、户外虫鸣声,还是厨房烹饪的嘈杂声,芯片均能精准提取有效指令,识
    广州唯创电子 2025-04-08 08:40 105浏览
  • 曾几何时,汽车之家可是汽车资讯平台领域响当当的“扛把子”。2005 年成立之初,它就像一位贴心的汽车小助手,一下子就抓住了大家的心。它不仅吸引了海量用户,更是成为汽车厂商和经销商眼中的“香饽饽”,广告投放、合作推广不断,营收和利润一路高歌猛进,2013年成功在纽交所上市,风光无限。2021年更是在香港二次上市,达到了发展的巅峰,当年3月15日上市首日,港股股价一度高达184.6港元,市值可观。然而,如今的汽车之家却陷入了困境,业务下滑明显。业务增长瓶颈从近年来汽车之家公布的财报数据来看,情况不容
    用户1742991715177 2025-04-07 21:48 74浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 99浏览
  • 文/Leon编辑/cc孙聪颖‍转手绢、跳舞、骑车、后空翻,就在宇树、智元等独角兽企业率领“机器人大军”入侵短视频时,却有资本和科技大佬向此产业泼了一盆冷水。金沙江创投管理合伙人朱啸虎近日突然对人形机器人发难,他表示“最近几个月正在批量退出人形机器人公司”。“只是买回去做研究的,或者买回去做展示的,这种都不是我们意义上的商业化,谁会花十几万买一个机器人去干这些活?”朱啸虎吐槽。不过,朱啸虎的观点很快就遭到驳斥,众擎机器人的创始人、董事长赵同阳回怼道:“(朱啸虎)甚至问出了人形机器人在这个阶段有什么
    华尔街科技眼 2025-04-07 19:24 110浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦