前特斯拉工程师,把类脑计算带进自动驾驶

原创 赛博汽车 2024-07-19 08:03

作者 | 褚万博

编辑 | 章涟漪


一种很新的自动驾驶技术路径,出现了。
同样是端到端,但在感知层面引入包括视觉、声音、文本等不同类型的信息,通过多形态的感知元素token化输入,形成多模态感知的的端到端自动驾驶大模型。
类似的想法马斯克在此前也表达过,即将声音纳入自动驾驶的感知,但至今并未实现。
最外层保证安全底线的技术,则是引入一个对自动驾驶行业非常陌生的技术——类脑科学,通过模拟生物大脑运行机制和对危险感知规避的天性,代替以规则代码为主的安全保障层。
类脑科学+多模态端到端大模型,当下算是行业内一种少有,或者是没有过的尝试。
技术方案被叫做Nullmax Intelligence(NI),来自一家此前声量并不算大的渐进式自动驾驶公司:Nullmax(纽劢)。
一个在业内不太显眼的团队,做出的没人见过的方案。这家公司从何而来,有何独到之处?
01
从特斯拉到Nullmax
长久以来,业内关于Nullmax的信息并不多见,这家公司上一次敞开向外界展示技术方案,还是在2019年,等到最近Nullmax Intelligence自动驾驶方案发布,已经过去5年时间。

Nullmax融资情况

融资方面放在同时期的自动驾驶公司中间也并不算出彩,企查查结果显示,自成立至今,Nullmax经历5轮融资,累计披露融资金额不到10亿元。
行事确实低调,但背后团队履历相当亮眼。
公开信息显示,Nullmax在2016年成立于美国硅谷,其创始人徐雷,本科毕业于中国科学技术大学计算机科学专业,之后前往美国深造,并取得纽约州立大学布法罗分校计算机科学博士学位。
在创立Nullmax前,徐雷曾在高通有过3年的工作经历,后来加入特斯拉,担任特斯拉自动驾驶高级计算机视觉工程师。
Nullmax创始人徐雷
在特斯拉履职期间,徐雷主要负责的,就是Autopilot视觉研发,担任Tesla Vision深度学习负责人,曾从零开始组织研发Tesla Vision深度学习网络。
最终在2016年,Autopilot 2.0成功取代Mobileye的视觉系统,在Model X上量产。
另一位核心团队成员宋新雨,同样来自特斯拉,曾在特斯拉任职研发质量和供应链部门高级经理,期间曾是Autopilot及娱乐系统开发团队核心骨干成员
Autopilot 1.0和Autopilot 2.0系统的研发和产品化之路,宋新雨也有过深度参与。
2016年,正值Autopilot结果之时,在特斯拉相识的徐雷与宋新雨出走特斯拉,成立Nullmax。由徐雷担任CEO兼CTO职位,主导技术研发工作,宋新雨则出任COO一职,负责公司运营。
在这个关键时刻离开特斯拉选择创业,徐雷告诉《赛博汽车》,一是在特斯拉看到了传统车企以及Tier 1在智能化转型过程中,一些以AI驱动应用能力的缺失,比如智能驾驶;二则是特斯拉作为一家车企,其本身的愿景是可持续能源的发展。
而Nullmax,最终的目标是自动驾驶乃至之后完全的无人驾驶。
不过,特斯拉的经历也对Nullmax最初选择自动驾驶实现路线产生了重要的影响,即纯视觉、渐进式的自动驾驶路线。
Nullmax在2019年发布MAX 1.0
2019年,Nullmax发布其自动驾驶解决方案(现在来看要归类于L3以下的智能驾驶)MAX 1.0,方案基于英伟达Xavier 平台,感知套件采用12个摄像头+5个毫米波雷达+12个超声波雷达,可以实现包括泊车、高速上的高阶智能驾驶功能。
同时,需要注意的是,这套方案并没有高精地图。去(激光)雷达,去(高精)地图这类近两年争议才收敛起来的议题,Nullmax确实在2019年的时候就有了前瞻的判断。
等到业内意见基本统一后,时隔5年,Nullmax又带着一套没人见过(至少是准量产心态)的方案走来了。
依旧是前瞻?
02
类脑计算?一种很新的自动驾驶
至少从两个方面来说,Nullmax此次带来的自动驾驶方案Nullmax Intelligence,是截止到目前业内发布的方案中的唯一。
按照当前端到端大模型的理解,相比此前感知、规控、执行等等模块化的环节,自动驾驶大模型可以从感知到决策一个模型通路解决,但当下各家除了特斯拉,基本是在感知层面,或者是从传感器数据输入到感知结果输出一个模块大模型,规控、决策仍然处于小模块(层层递进)阶段。
Nullmax Intelligence大概逻辑
但根据Nullmax现场展示的方案来看,NI是从感知到执行一个大模型解决,并且在此之外,声音、文本等等环境信息,通过token化可以一起为大模型提供感知。
类似的想法马斯克此前有过发声,比如将路面环境声音信息作为感知输入自动驾驶系统,不过目前来看还停留在想法阶段。
大模型的输出端,则包含3个部分:即时的驾驶动作、可视化结果以及延时0.2秒的场景描述(文本)。
驾驶动作即执行层面,而场景描述,按照我们的理解,是作为一种模型验证以及问题回溯的工具出现,也就是解释修正大模型的作用。
这里的一个问题是,多模态感知意味着感知信息的类型增加、数据量提升,这对模型的计算提出了更大的要求,最后落到一个问题上就是,车端计算芯片算力是否足够。
这里需要注意的是,根据Nullmax的说法,这套方案稀疏算力100 TOPS就够用。
对于这个问题,Nullmax表示,其大模型是一个非attention机制的一种语言模型,不同感知信息token化之后进入大模型,对算力的要求是非常低的。
安全类脑概念
除了多模态的感知输入,Nullmax还在最新的自动驾驶方案中引入了一个“安全类脑”的概念。
个概念对于自动驾驶大模型来说可能比较陌生,但类脑计算本身在全世界范围内的前沿科学中比较火热。这里简单介绍一下,所谓类脑计算是借鉴生物神经系统信息处理模式和结构的计算理论、体系结构、芯片设计以及应用模型与算法的总称。
已经是一个非常庞大的学科,但简单理解,就是借鉴生物大脑的运行方式处理问题。

具体来看,Nullmax在这套方案中,通过解密10万神经元级别的斑马鱼大脑避险的运作方式,为自动驾驶提供一个安全底线。即在大模型输出结果后,在判定有误的情况下快速做出安全动作。
在Nullmax的方案中,大模型输出的结果作为一级仲裁,安全类脑为二级仲裁,两个结果一致时正常执行,不一致时由二级仲裁。
这种机制是大多数自动驾驶玩家的共同选择,即在大模型输出结果之外还有另一套负责底线的模型兜底。不过更多的玩家趋向于采用规则代码这种直观的方式去作为最后一道安全屏障。
引入类脑计算,Nullmax还是第一个。为什么不要规则代码而用类脑计算?
Nullmax认为,规则代码无法穷尽场景,而类脑计算可以利用生物大脑对于危险情况的反应,快速做出反应。
当然,作为自动驾驶公司,横跨学科有点难度。安全类脑的成果并非Nullmax原创,而是来自岩思类脑研究院的李孟团队。
安全类脑学术成果发表在《Nature》
相关研究研究论文《Internal state dynamics shape brainwide activity and foraging behaviour》曾在《Nature》发表。
多模态+类脑计算,在我们能看到的自动驾驶解决方案中,是独一档的存在。
这种技术方案是否真的有效,是否会比现有端到端大模型的体验更好,我们不做评判,因为还需要验证,根据徐雷的透露,这套方案将会在明年初落地。
届时相信会得到答案。
抛开这套技术本身,Nullmax这家声量并不大的自动驾驶公司,或者是智能驾驶方案供应商给了我们另一个话题的启发。
03
智能驾驶方案小厂,怎么活?
事实上,智能驾驶方案供应商中,体量不大的这部分玩家如何生存,已经成了业内热议的一个话题。
现实也确实不那么乐观,一方面,在主机厂降本增效的大趋势下,作为供应链的一环,利润寒气会传导过来,尤其是体量不大,话语权比较小的小厂;
另一方面,融资环境不够理想的大环境,等待变现的投资人,普遍亏损的经营现状……如此等等,再加上技术资源和投入劣于大厂,担忧很多,讨论也很多。
对于这些问题,Nullmax部分回答了我们。
首先是在技术投入上的天然劣势。当自动驾驶进入端到端大模型阶段,有2个关键因素比较重要,一是大量真实数据的投喂,二是AI算力的模型训练支持。
一个需要车,一个需要高成本投入。
第三方智能驾驶方案公司,尤其是小体量玩家,二者都没有,这还怎么玩?
Nullmax认为后期虚拟数据占比更多
徐雷对此的回答是,在自动驾驶训练的初期,真实有效数据很关键,但随着模型的逐渐成熟,真实场景数据在模型训练后期的增益效果以及需要的量会变小,AIGC生成虚拟数据就非常关键。
而在AI算力方面,徐雷表示,在给定预算下,让哪些数据先进系统,怎么去在训练中调它的收敛速度,调参数,能让系统性能提升更高,这里面是有很多技巧,并不是说多少张卡(AI芯片)多少数据就对应了性能多少的提升。
简而言之,以技巧取胜。
其次是作为第三方的供应商,如何低成本开发适配不同需求、车型的产品方案。
Nullmax的做法是,通过MaxOS中间件平台,实现软硬件解耦,实现不同计算平台、不同传感器配置(包括激光雷达)、不同层级智能驾驶功能,适配同一个软件算法平台。
当前Nullmax的产品序列在这一套模式下,分成低、中、高3个组合方案,包括:
1、1V2T,一个摄像头,加上一颗德州仪器的2TOPS算力芯片,实现基础的L2级辅助驾驶;
2、5V/6V8T,5/6个摄像头,利用8TOPS算力,实现高速NOA和记忆泊车,且泊车过程可检测障碍物;
3、11V,实现L2+,包括高速NOA和自主代客泊车。
Nullmax产品方案
最后,我们上文提到的“类脑计算”,其实并非是Nullmax原创,而是来自岩思类脑研究院。这个岩思类脑研究院后面的母公司,也是Nullmax的控股母公司岩山科技。
就是那个去年10月份斥资7.8亿元投资Nullmax的岩山科技。
所以还在找出路的智能驾驶方案商们懂了吗?上市不是当下唯一的选择,先找棵大树也不错。
-END-

更多阅读——

赛博汽车 聚焦智能汽车、自动驾驶,与产业共同成长.
评论
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 128浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 65浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 109浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 104浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 104浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 102浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 102浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 89浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 125浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 109浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 100浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦