【光电智造】3D视觉相关知识-SLAM框架-常见方案对比

今日光电 2024-07-18 18:01

 今日光电 

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

点云数据

通过测量仪器获得 物体外观 的点数据的集合,叫点云。点云是在和目标表面特性的海量点集合。
点云是在和目标表面特性的海量点集合。
      根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。
      根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。
结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。
      在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)。
点云的格式:; *.pts; *.asc ; *.dat; *.stl ;

一篇关于3D点云的论文

       随着激光雷达,RGBD相机等3D传感器在机器人,无人驾驶领域的广泛应用。针对三维点云数据的研究也逐渐从低层次几何特征提取(PFH,FPFH,VFH等)向高层次语义理解过渡(点云识别,语义分割)。与图像感知领域深度学习几乎一统天下不同,针对无序点云数据的深度学习方法研究则进展缓慢。分析其背后的原因,不外乎三个方面:

    1.点云具有无序性。受采集设备以及坐标系影响,同一个物体使用不同的设备或者位置扫描,三维点的排列顺序千差万别,这样的数据很难直接通过End2End的模型处理。

  • 2.点云具有稀疏性。在机器人和自动驾驶的场景中,激光雷达的采样点覆盖相对于场景的尺度来讲,具有很强的稀疏性。在KITTI数据集中,如果把原始的激光雷达点云投影到对应的彩色图像上,大概只有3%的像素才有对应的雷达点。这种极强的稀疏性让基于点云的高层语义感知变得尤其困难。


  • 3.点云信息量有限。点云的数据结构就是一些三维空间的点坐标构成的点集,本质是对三维世界几何形状的低分辨率重采样,因此只能提供片面的几何信息。
    参考文章:斯坦福学者提出点云学习模型2017-8



SALM基础 第一篇

     Simultaneous Localization and Mapping,即时定位与地图构建技术。无论在室内、野外、空中还是水下,SLAM是机器人进入未知环境遇到的第一个问题。本期将给大家介绍SLAM的基础知识:传感器与视觉SLAM框架。

近来年,智能机器人技术在世界范围内得到了大力发展。人们致力于把机器人用于实际场景:从室内的移动机器人,到野外的自动驾驶汽车、空中的无人机、水下环境的探测机器人等等,均得到了广泛的关注。

        在大多数场合中,我们研究机器人会碰到一个基础性的困难,那就是定位和建图,也就是所谓的SLAM技术。没有准确的定位与地图,扫地机就无法在房间自主地移动,只能随机乱碰;家用机器人就无法按照指令准确到达某个房间。此外,在虚拟现实(Virtual Reality)和增强现实技术(Argument Reality)中,没有SLAM提供的定位,用户就无法在场景中漫游。在这几个应用领域中,人们需要SLAM向应用层提供空间定位的信息,并利用SLAM的地图完成地图的构建或场景的生成。

传感器

       当我们谈论SLAM时,最先问到的就是传感器。SLAM的实现方式与难度和传感器的形式与安装方式密切相关。传感器分为激光和视觉两大类,视觉下面又分三小方向。下面就带你认识这个庞大家族中每个成员的特性。

  • 1. 传感器之激光雷达
          激光雷达是最古老,研究也最多的SLAM传感器。它们提供机器人本体与周围环境障碍物间的距离信息。常见的激光雷达,例如SICK、Velodyne还有我们国产的rplidar等,都可以拿来做SLAM。激光雷达能以很高精度测出机器人周围障碍点的角度和距离,从而很方便地实现SLAM、避障等功能。

           主流的2D激光传感器扫描一个平面内的障碍物,适用于平面运动的机器人(如扫地机等)进行定位,并建立2D的栅格地图。这种地图在机器人导航中很实用,因为多数机器人还不能在空中飞行或走上台阶,仍限于地面。在SLAM研究史上,早期SLAM研究几乎全使用激光传感器进行建图,且多数使用滤波器方法,例如卡尔曼滤波器与粒子滤波器等。

           激光的优点是精度很高,速度快,计算量也不大,容易做成实时SLAM。缺点是价格昂贵,一台激光动辄上万元,会大幅提高一个机器人的成本。因此激光的研究主要集中于如何降低传感器的成本上。对应于激光的EKF-SLAM理论方面,因为研究较早,现在已经非常成熟。与此同时,人们也对EKF-SLAM的缺点也有较清楚的认识,例如不易表示回环、线性化误差严重、必须维护路标点的协方差矩阵,导致一定的空间与时间的开销,等等。
  • 2. 传感器之视觉SLAM

视觉SLAM是21世纪SLAM研究热点之一,一方面是因为视觉十分直观,不免令人觉得:为何人能通过眼睛认路,机器人就不行呢?另一方面,由于CPU、GPU处理速度的增长,使得许多以前被认为无法实时化的视觉算法,得以在10 Hz以上的速度运行。硬件的提高也促进了视觉SLAM的发展。
以传感器而论,视觉SLAM研究主要分为三大类:单目、双目(或多目)、RGBD。其余还有鱼眼、全景等特殊相机,但是在研究和产品中都属于少数。此外,结合惯性测量器件(Inertial Measurement Unit,IMU)的视觉SLAM也是现在研究热点之一。就实现难度而言,我们可以大致将这三类方法排序为:单目视觉>双目视觉>RGBD。
单目相机:
单目相机SLAM简称MonoSLAM,即只用一支摄像头就可以完成SLAM。这样做的好处是传感器特别的简单、成本特别的低,所以单目SLAM非常受研究者关注。相比别的视觉传感器,单目有个最大的问题,就是没法确切地得到深度。这是一把双刃剑。
一方面,由于绝对深度未知,单目SLAM没法得到机器人运动轨迹以及地图的真实大小。直观地说,如果把轨迹和房间同时放大两倍,单目看到的像是一样的。因此,单目SLAM只能估计一个相对深度,在相似变换空间Sim(3)中求解,而非传统的欧氏空间SE(3)。如果我们必须要在SE(3)中求解,则需要用一些外部的手段,例如GPS、IMU等传感器,确定轨迹与地图的尺度(Scale)。
另一方面,单目相机无法依靠一张图像获得图像中物体离自己的相对距离。为了估计这个相对深度,单目SLAM要靠运动中的三角测量,来求解相机运动并估计像素的空间位置。即是说,它的轨迹和地图,只有在相机运动之后才能收敛,如果相机不进行运动时,就无法得知像素的位置。同时,相机运动还不能是纯粹的旋转,这就给单目SLAM的应用带来了一些麻烦,好在日常使用SLAM时,相机都会发生旋转和平移。不过,无法确定深度同时也有一个好处:它使得单目SLAM不受环境大小的影响,因此既可以用于室内,又可以用于室外。

双目相机:
     相比于单目,双目相机通过多个相机之间的基线,估计空间点的位置。与单目不同的是,立体视觉既可以在运动时估计深度,亦可在静止时估计,消除了单目视觉的许多麻烦。不过,双目或多目相机配置与标定均较为复杂,其深度量程也随双目的基线与分辨率限制。通过双目图像计算像素距离,是一件非常消耗计算量的事情,现在多用FPGA来完成。

RGBD:
RGBD = RGB + Depth Map
       RGBD相机是2010年左右开始兴起的一种相机,它最大的特点是可以通过红外结构光或Time-of-Flight(飞行时间)原理,直接测出图像中各像素离相机的距离。因此,它比传统相机能够提供更丰富的信息,也不必像单目或双目那样费时费力地计算深度。目前常用的RGBD相机包括Kinect/Kinect V2(微软公司开发)、Xtion(华硕)等。不过,现在多数RGBD相机还存在测量范围窄、噪声大、视野小等诸多问题。出于量程的限制,主要用于室内SLAM。

视觉SLAM框架

视觉SLAM几乎都有一个基本的框架 。一个SLAM系统分为四个模块(除去传感器数据读取):VO、后端、建图、回环检测。这里我们简要介绍各模块的涵义,之后再详细介绍其使用方法。


SLAM框架之视觉里程计
Visual Odometry,即视觉里程计。它估计两个时刻机器人的相对运动(Ego-motion)。在激光SLAM中,我们可以将当前的观测与全局地图进行匹配,用ICP求解相对运动。而对于相机,它在欧氏空间里运动,我们经常需要估计一个三维空间的变换矩阵——SE3或Sim3(单目情形)。求解这个矩阵是VO的核心问题,而求解的思路,则分为基于特征的思路和不使用特征的直接方法。

特征匹配


基于特征的方法是目前VO的主流方式。对于两幅图像,首先提取图像中的特征,然后根据两幅图的特征匹配,计算相机的变换矩阵。最常用的是点特征,例如Harris角点、SIFT、SURF、ORB。如果使用RGBD相机,利用已知深度的特征点,就可以直接估计相机的运动。给定一组特征点以及它们之间的配对关系,求解相机的姿态,该问题被称为PnP问题(Perspective-N-Point)。PnP可以用非线性优化来求解,得到两个帧之间的位置关系。
不使用特征进行VO的方法称为直接法。它直接把图像中所有像素写进一个位姿估计方程,求出帧间相对运动。例如,在RGBD SLAM中,可以用ICP(Iterative Closest Point,迭代最近邻)求解两个点云之间的变换矩阵。对于单目SLAM,我们可以匹配两个图像间的像素,或者像图像与一个全局的模型相匹配。直接法的典型例子是SVO和LSD-SLAM。它们在单目SLAM中使用直接法,取得了较好的效果。目前看来,直接法比特征VO需要更多的计算量,而且对相机的图像采集速率也有较高的要求。
SLAM框架之后端
在VO估计帧间运动之后,理论上就可以得到机器人的轨迹了。然而视觉里程计和普通的里程计一样,存在累积误差的问题(Drift)。直观地说,在t1和t2时刻,估计的转角比真实转角少1度,那么之后的轨迹就全部少掉了这1度。时间一长,建出的房间可能由方形变成了多边形,估计出的轨迹亦会有严重的漂移。所以在SLAM中,还会把帧间相对运动放到一个称之为后端的程序中进行加工处理。
早期的SLAM后端使用滤波器方式。由于那时还未形成前后端的概念,有时人们也称研究滤波器的工作为研究SLAM。SLAM最早的提出者R. Smith等人就把SLAM建构成了一个EKF(Extended Kalman Filter,扩展卡尔曼滤波)问题。他们按照EKF的形式,把SLAM写成了一个运动方程和观测方式,以最小化这两个方程中的噪声项为目的,使用典型的滤波器思路来解决SLAM问题。
当一个帧到达时,我们能(通过码盘或IMU)测出该帧与上一帧的相对运动,但是存在噪声,是为运动方程。同时,通过传感器对路标的观测,我们测出了机器人与路标间的位姿关系,同样也带有噪声,是为观测方程。通过这两者信息,我们可以预测出机器人在当前时刻的位置。同样,根据以往记录的路标点,我们又能计算出一个卡尔曼增益,以补偿噪声的影响。于是,对当前帧和路标的估计,即是这个预测与更新的不断迭代的过程。
21世纪之后,SLAM研究者开始借鉴SfM(Structure from Motion)问题中的方法,把捆集优化(Bundle Adjustment)引入到SLAM中来。优化方法和滤波器方法有根本上的不同。它并不是一个迭代的过程,而是考虑过去所有帧中的信息。通过优化,把误差平均分到每一次观测当中。在SLAM中的Bundle Adjustment常常以图的形式给出,所以研究者亦称之为图优化方法(Graph Optimization)。图优化可以直观地表示优化问题,可利用稀疏代数进行快速的求解,表达回环也十分的方便,因而成为现今视觉SLAM中主流的优化方法。
SLAM框架之回环检测
回环检测,又称闭环检测(Loop closure detection),是指机器人识别曾到达场景的能力。如果检测成功,可以显著地减小累积误差。回环检测实质上是一种检测观测数据相似性的算法。对于视觉SLAM,多数系统采用目前较为成熟的词袋模型(Bag-of-Words, BoW)。词袋模型把图像中的视觉特征(SIFT, SURF等)聚类,然后建立词典,进而寻找每个图中含有哪些“单词”(word)。也有研究者使用传统模式识别的方法,把回环检测建构成一个分类问题,训练分类器进行分类。
回环检测的难点在于,错误的检测结果可能使地图变得很糟糕。这些错误分为两类:1.假阳性(False Positive),又称感知偏差(Perceptual Aliasing),指事实上不同的场景被当成了同一个;2.假阴性(False Negative),又称感知变异(Perceptual Variability),指事实上同一个场景被当成了两个。感知偏差会严重地影响地图的结果,通常是希望避免的。一个好的回环检测算法应该能检测出尽量多的真实回环。研究者常常用准确率-召回率曲线来评价一个检测算法的好坏。


参考文章

双目立体视觉的数学原理

双目立体视觉是基于视差原理,由多幅图像获取物体三维几何信息的方法。在机器视觉系统中,双目视觉一般由双摄像机从不同角度同时获取周围景物的两幅数字图像,或有由单摄像机在不同时刻从不同角度获取周围景物的两幅数字图像,并基于视差原理即可恢复出物体三维几何信息,重建周围景物的三维形状与位置。
双目视觉有的时候我们也会把它称为体视,是人类利用双眼获取环境三维信息的主要途径。从目前来看,随着机器视觉理论的发展,双目立体视觉在机器视觉研究中发回来看了越来越重要的作用。本篇帖子主要研究了双目视觉的数学原理。
双目立体视觉的数学原理
双目立体视觉是基于视差,由三角法原理进行三维信息的获取,即由两个摄像机的图像平面和北侧物体之间构成一个三角形。已知两个摄像机之间的位置关系,便可以获得两摄像机公共视场内物体的三维尺寸及空间物体特征点的三维坐标。所以,双目视觉系统一般由两个摄像机构成。
  • 双目立体视觉三维测量原理


           上图所示为简单的平视双目立体成像原理图,两摄像机的投影中心连线的距离,即基线距离B。两摄像机在同一时刻观看时空物体的同一特征点P,分别在“左眼”和“右眼”上获取了点P的图像,他们的坐标分别为Pleft=        (Xleft,Yleft);Pright=(Xright,Yright)。将定两摄像机的图像在同一平面上,则特征点P的图像坐标的Y坐标一定是相同的,即Yleft = Yright =Y。由三角几何关系可以得到如下关系式:


    则视差为:Disparity=Xleft-Xright.由此可以计算出特征点P在摄像机坐标系下的三维坐标:


          因此,左摄像机像面上的任意一点只要能在右摄像机像面上找到对应的匹配点,就完全可以确定该点的三维坐标。这种方法是点对点的运算,像平面上所有点只要存在相应的匹配点,就可以参与上述运算,从而获取对应的三维坐标。


  • 双目立体视觉数学模型


          在分析了最简单的平视双目立体视觉的三维测量原理基础上,现在我们就有能力来考虑一般情况。如上图所示,设左摄像机O-xyz位于世界坐标系原点,且没有发生旋转,图像坐标系为Ol-X1Y1,有效焦距为fl;右摄像机坐标系为Or-xyz,图像坐标系为Or-XrYr,有效焦距为fr。那么根据摄像机的投射模型我们就能得到如下关系式:


    因为O-xyz坐标系与Or-xryrzr坐标系之间的位置关系可通过空间转换矩阵MLr表示为:


    同理,对于O-xyz坐标系中的空间点,两个摄像机面点之间的对应关系可以表示为:


    于是,空间点三维坐标可以表示为


         因此,只要我们通过计算机标定技术获得左右计算机内参数/焦距fr,fl和空间点在左右摄像机中的图像坐标,就能够重构出被测点的三维空间坐标。参考文章


3D视觉方案

双目方案

RGBD方案

飞行时间方案

三种方案对比

  • 1.双目方案,最大的问题在于实现算法需要很高的计算资源,导致实时性很差,而且基本跟分辨率,检测精度挂钩。也就是说,分辨率越高,要求精度越高,则计算越复杂,同时,纯双目方案受光照,物体纹理性质影响。
  • 2.结构光方案,目的就是为了解决双目中匹配算法的复杂度和鲁棒性问题而提出,该方案解决了大多数环境下双目的上述问题。但是,在强光下,结构光核心技术激光散斑会被淹没。因此,不合适室外。同时,在长时间监控方面,激光发射设备容易坏,重新换设备后,需要重新标定。
  • 3.TOF方案,传感器技术不是很成熟,因此,分辨率较低,成本高,但由于其原理与另外两种完全不同,实时性高,不需要额外增加计算资源,几乎无算法开发工作量,是未来。
来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论 (0)
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 115浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 250浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 398浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 106浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 375浏览
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 92浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 284浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 246浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 204浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 191浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 154浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦