锂电池的电压和容量是如何产生的?

锂电联盟会长 2024-07-18 10:30

点击左上角“锂电联盟会长”,即可关注!


如果将灯连接到锂电池,电流就会流动,灯就会开始发光。但为什么会发生这种情况呢?为什么电池放电后电压会下降?这与锂离子的浓度有什么关系?为什么电极类型会影响电池的容量?本文提供了答案。
锂基电池——无论是固态电池还是传统锂离子电池——在结构上基本相似。有两个电极(正极和负极),其间有隔膜。充电时,离子从正极(阴极)迁移到负极(阳极),放电时,离子再次迁移回来。由于隔膜对电子是不可渗透的,因此电子会穿过连接的负载(例如灯),并导致其点亮(特别是有关固态电池构造的更多信息,请参见此处)。
该描述可以用来解释为什么电流在负载中流动,但不足以理解该能量从何而来。为此,有必要更深入地研究电池的功能。
电池电压窗口
首先要明确为什么可以测量正负极之间的电压。锂基电池的电压窗口由负极和正极处的部分反应定义,并相应地取决于那里发生的反应。电池两极可测量的电压是各个电极产生的电压之差:
UOC = U负极– U正极
负极和正极的电压不是固定值,而是取决于电池的充电状态。然而,文献中经常给出电极的固定值(例如,LCO 为 3.9 V,参见[1])。这些通常对应于平均电压。
图1 显示了如何从负极和正极电势得出最终的电池电压(在示例电池 LCO | 石墨上显示)。x 轴显示电极中按比例结合的锂量。对于(理想)满电池 x=1,对于空电池 x=0。

图1:LCO|石墨电池的电压分为负极电势和正极电势。通常,只有 70% 的锂离子从正极中提取(虚线)。材料选择对于固态电池来说并不典型,但原则上是可能的 。[2] 
电池正负极端的可测电压是由锂与电极发生的化学反应所产生的。以下将以LCO(锂钴氧化物)正极为例对此进行更详细的解释。图2展示了LCO|石墨电池的放电过程。这是一种带有液态电解质的锂离子电池。原则上,这种设计也适用于固态电池,尽管LCO和纯石墨作为电极材料是非典型的,而是使用了进一步发展的材料(例如硅石墨作为负极和NMC811作为正极)。
图 2:液态电解质锂离子电池的放电反应。
电压由负极和正极的锂离子充放电过程产生。图中所示反应也适用于固态电池,但此处选择的材料并不典型,仅供参考。
放电过程中,锂离子从负极迁移到正极。LCO 是一种具有层状结构的正极。放电过程中,锂在氧化钴层之间插层。锂与氧化钴的反应方程式如下:
CoO2 + e + Li+ → LiCoO2 [3]
外部可测量电压的产生是由于锂在层状氧化物各层中的插层反应以及在这一放热过程中释放的能量。借助所谓的 Nernst 方程,可以根据电池中的物质浓度计算出半电池的电压:
Ured = U(0,red) – (RT / (ze F)) * ln(αRed / αOx)
U0,red电极电位(可从电化学电压系列表中读取)
R: 通用气体常数
T: 温度(开尔文)
ze:  转移电子数:转移电子数(锂只有一个价电子,因此此处为 1)
F: 法拉第常数
αRed , αOx各氧化还原反应物的浓度
氧化还原反应物的浓度随电极电荷状态的变化而变化。因此,产生的电极电压基本上取决于电极电位,电极电位根据温度和电荷状态进行校正。应该指出的是,一些二次反应也发生在电池中,这也影响到所产生的电压,因此上述方程只能作为第一近似值使用。
由于能斯特方程对电极电位的强烈依赖性,我们尝试在这里选择具有最高电极电位的元素(参见图3)。元素周期表右边的元素在这里达到了更高的比例,因为元素的离子半径减小了,电子更强烈地被原子核吸引。更强的核作用力会导致更高的电极电位。
这种联系也解释了为什么 LCO (LixCoO2)和 NMC811被用作正极材料。在过渡金属中,这些是半电池电压最高的化合物(见图3)[4]。
图3:过渡金属的电负性。
电压窗口的限制
电池的可允许电压范围不仅受电极的影响,还受所使用电解质的电化学窗口限制。特别是液态电解质不能承受超过4.5V的电压,因为正极与电解质之间会发生寄生反应,导致电解质缓慢分解[5]。固态电池在中期内可能能够突破这种限制。例如,氧化物电解质具有特别宽的电压窗口,硫化物电解质在添加附加保护层后也可能能够承受更高的电压[6]。
电压窗口的第二个重要限制是通常不能利用电池的完整物理电压窗口。对于LCO正极来说,将锂从钴层中溶解超过70%是不可能的,因为这会削弱正极的机械结构,导致加速老化。因此,与Li/Li+相比,LCO电池的电压被限制在4.2V[7]。在负极方面,通常也不能将所有锂离子移除,因此一些锂离子仍然留在负极,从而降低了最大可实现的容量。
电池容量的确定
为了使电池提供最大容量,负极和正极必须被调整得当,以便在充电过程中,所有从正极出来的锂离子都能在负极结构中找到储存的位置。负极尺寸与正极尺寸之间的比例称为N/P比,其中N描述负极的质量分数,P描述正极的质量分数。由于每个从正极出来的锂离子都必须在负极找到一个位置,所以尺寸比N/P≈1。然而,锂离子很难总是在负极找到一个位置。在快速充电过程中,锂离子往往倾向于在负极上沉积(锂电镀),因为它们不能迅速在负极结构中找到空闲位置[8]。由于锂电镀是电池的主要损坏机制之一,负极的比例稍微增加(N/P≈1.04-1.2)[9],以使离子不必寻找太长时间才能找到空闲位置。
图4:计算正极材料理论容量的过程。
各种活性材料的容量通常以Ah/kg为单位给出,并可以通过计算(见图4中的计算方案)得出。计算只考虑活性材料。在电极理论容量的计算中忽略了化学助剂、接触表面、保护层等。计算时,首先确定电极材料的质量(以kg/mol为单位)。这个值可以通过摩尔质量计算或者从查找表中获取。对于LCO,摩尔质量为0.09788 kg/mol。在第二步中,可以利用阿伏伽德罗常数计算一千克电极材料中有多少分子(对于LCO,这是6.15*10^24个原子每千克)。
作为碱金属(第一主族的元素),锂只有一个可以参与化学反应的电子。每个电子带有一个负的基本电荷 e–。因此,一个锂原子可以释放一个基本电荷 e–。
为了计算容量,现在必须考虑到在放电过程中,每个锂离子都会通过连接的负载传递一个电子。因此,容量是一个原子所携带电荷量与原子数量的乘积。对于LCO,这导致容量为274 Ah/kg。其他正极材料和负极材料的容量也可以用同样的方法计算。图5列出了最重要的正极材料的计算理论能量密度。
图5:正极电容的理论计算
计算值代表理论上可实现的能量密度,但通常与实际值不太接近。例如,对于LCO,在充电过程中只能去除部分锂,因此理论容量没有得到充分利用,并且在实践中获得的值明显较低。尽管如此,计算得出的数据为比较不同的活性材料提供了一个很好的指标。
结论
锂电池的能量实际上从何而来的问题的答案很清楚:原因是充电和放电过程中电池中或多或少可逆地发生的氧化还原反应。由于电池的结构,充电期间电子被迫通过充电器迁移到负极。由此产生的电荷转移导致锂离子也迁移到负极。放电时,过程相反,电流流过连接的负载并传输功率。电池在给定充电状态下产生的电压可以使用能斯特方程计算,并且主要取决于电极上锂离子的浓度。迁移到正极侧的锂离子越多,它们在正极的浓度就越高,电池电压相应下降。
电池能提供多少能量取决于电池的容量。容量是特定于材料的变量,可以使用简单的方程直接从材料数据计算出来。
所有计算出的参数均代表理论(最大)值,在实践中并未达到。电压受到电解液的限制,容量的充分利用会影响正极的机械稳定性。此外,为了防止锂的寄生沉积,所使用的负极材料总是比绝对必要的材料稍多一些。良好设计过程的目标是权衡所有这些影响,以获得能够在汽车使用中耐受数百次循环的实用电池。最好的电池始终是妥协的结果。
参考资料:
[1] Park, J: Principles and Applications of Lithium Secondary Batteries, Department of Chemical & Biomolecular Eng., Korea, 2012, S. 28
[2] Qnovo: The science behind why the battery vendors are hitting the wall, 2014, https://www.qnovo.com/blogs/why-battery-vendors-are-hitting-the-wall
[3] J. Goodenough, K. Park: „The Li-Ion Rechargeable Battery: A Perspective“, American Chemical Society, 2013
[4] Liu, C., et al.: “Understanding electrochemical potentials of cathode materials in rechargeable batteries”, Materials today, 2016
[5] Yang, L.; Ravdel, B. ;Lucht, B.: „Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries“, Electrochemical and Solid-State Letters, 2010
[6] Fraunhofer Institute for Systems and Innovation Research ISI: Solid-State Battery Roadmap 2035+, Karlsruhe, 2022
[7] Korthauer, Reiner : Handbuch Lithium-Ionen-Batterien, Frankfurt, 2013
[8] TYCORUN: A comprehensive guide to battery cathode and anode capacity design, 2022, https://www.tycorun.com/blogs/news/a-comprehensive-guide-to-battery-cathode-and-anode-capacity-design
[9] TYCORUN: Design anode to cathode ratio of lithium-ion battery, 2023, https://www.takomabattery.com/anode-to-cathode-ratio/
[10]: Park, J: Principles and Applications of Lithium Secondary Batteries, Department of Chemical & Biomolecular Eng., Korea, 2012, S. 28

相关阅读:

锂离子电池制备材料/压力测试

锂电池自放电测量方法:静态与动态测量法

软包电池关键工艺问题!

一文搞懂锂离子电池K值!

工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!

揭秘宁德时代CATL超级工厂!

搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!

锂离子电池生产中各种问题汇编

锂电池循环寿命研究汇总(附60份精品资料免费下载)




锂电联盟会长 研发材料,应用科技
评论
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 173浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 103浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 97浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 459浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 471浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 22浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 449浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 507浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 322浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 19浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 439浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 492浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 478浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦