【光电智造】史无前例!青年博士一周两篇Nature!深度学习在光学成像领域顶尖思路

今日光电 2024-07-17 18:00

 今日光电 

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

在探索光学成像技术的无限可能时,深度学习计算光学成像正逐步成为科研与应用的热点。传统光学成像技术虽已成熟,但其成像质量受限于物理原理,如衍射极限和像差等难题,难以进一步突破。而计算成像技术的兴起,结合数学与信号处理的知识,为光学成像开辟了新的道路。深度学习作为近年来迅速发展的技术,凭借其强大的数据处理和特征提取能力,为计算光学成像注入了新的活力。
深度学习计算光学成像的研究背景深厚,它旨在通过算法优化来解决传统光学成像中的难题,提升成像质量。这一领域融合了光学、计算机科学、数学等多个学科的知识,通过深度学习模型对光场信息进行多维度获取、编码与处理,从而突破传统成像的局限。
展望未来,深度学习计算光学成像的前景广阔。它不仅能够进一步提升成像分辨率,降低噪声,实现超分辨率成像,还能通过算法优化简化成像系统的硬件设备,降低成本。同时,其强大的环境适应性将使成像系统能够在各种复杂环境中保持稳定的性能,为医疗、无人驾驶、遥感监测等领域提供有力支持。随着跨学科融合的深入和技术的不断进步,我们有理由相信,深度学习计算光学成像将在未来发挥更加重要的作用,引领成像技术的新一轮革命。

近年来,深度学习在光学设计领域的应用引起了广泛关注。随着光子学结构设计成为光电子器件和系统设计的核心,深度学习为这一领域带来了新的机遇和挑战。传统的光子学结构设计方法通常基于简化的物理解析模型及相关经验,这种方法虽然可以得到所需的光学响应,但效率低下且可能错过最佳设计参数。深度学习通过数据驱动的思想建模,从大量数据中学习研究目标的规律与特征,为解决光子学结构设计面临的问题提供了新方向。例如,深度学习可以用于预测和优化光子学结构的性能,实现更高效、更精确的设计。在光子学结构设计领域,深度学习已被应用于多个方面。一方面,深度学习可以帮助设计超构材料、光子晶体、等离激元纳米结构等复杂的光子学结构,以满足高速光通信、高灵敏度传感和高效能源收集及转换等应用需求。另一方面,深度学习还可以用于优化光学元件的性能,如透镜、反射镜等,以实现更好的成像质量和更高的光学效率。此外,深度学习在光学设计领域的应用还推动了其他相关技术的发展。例如,深度学习可以用于实现智能光学成像系统,通过自动调整光学元件的参数来适应不同的成像需求。同时,深度学习还可以用于实现高效的光学计算和信息处理,为光学计算和信息处理领域的发展提供了新的思路和方法。
总之,深度学习在光学设计领域的应用为光子学结构的创新提供了新的机遇和挑战。未来,随着深度学习技术的不断发展和完善,相信它将在光学设计领域发挥更加重要的作用。

01

深度学习光学设计(光网络与逆向设计)专题

02

深度学习计算光学成像专题


FLOWER CLUSTERS

深度学习光学设计讲师介绍

主讲老师团队来自全国重点大学、国家“985工程”物理与信息交叉学科专业,有多年的机器学习和课题组科研经历!研究方向涉及光学设计与物理学,深度学习,机器学习等交叉领域。有着丰富知识积累和实战经验。参与国自然科学基金项目多项等,包括发表SCI论文十余篇,国家发明专利一项!担任过MDPI旗下等多个期刊的审稿人。

深度学习计算光学成像讲师介绍


主讲老师来自国外光学成像顶尖高校,擅长计算机视觉与深度学习成像研究。近年来发表SCI论文15篇,授权三项发明专利。研究方向包括:图像处理与计算机视觉、深度学习方法、物理驱动的光学成像、跨模态成像研究等。


深度学习光学设计目标


1.基于深度学习的光网络的培养目标主要集中在培养具备现代光学理论基础和深度学习技术知识的高级专业人才。他们不仅需要熟悉现代光学的原理,还需要掌握深度学习算法的原理和应用,能够结合深度学习和现代光学原理设计出具有光学加速功能的器件。 
2. 初步掌握构建深度学习模型所需的使用的工具,学会搭建深度学习开发环境。让初学者能够使用深度学习框架搭建常用神经网络模型,了解模型训练过程中出现的问题并掌握常用的解决办法。 
3. 熟悉超材料的发展现状,基本掌握多物理场仿真软件,并能够使用该软件计算光子晶体 的能带并对仿真结果做后处理。了解超表面在光学以及量子领域方面的应用,学会使用仿真软件对超表面结构进行仿真以及后续的结果分析。
4. 知道MATLAB与COMSOL以及Python间的交互方式,学会使用 Python处理COMSOL导出的数据,了解如何使用 MATLAB 将 COMSOL 的数据导出并处理为 Python 能读取的数据。 
5. 了解硅基光网络的发展现状,知道矩阵分解的原理,学会使用深度学习框架去搭建一个基于MZI的模型框架并将其应用在深度学习实例上。 
6. 未来利用光的加速功能,基于片上的光网络可以设计出具有加速功能的光芯片。基于衍射网络,则可以在自由空间上设计出快速成像系统,加速自动驾驶的图像识别。 
7. 利用深度学习模型,可以克服传统基于全波模拟的设计方法的劣势,可以快速给出给定 结构的目标响应,加速光学设计的过程。 

深度学习计算光学成像目标
1.掌握典型光学成像机理,了解其对应的数学模型及需求解的问题。
2.掌握典型的最优化理论及方法,能够通过设计目标函数求解典型的计算成像逆问题。
3.掌握深度学习算法的原理和应用,能够通过python编程实现典型的深度网络模型的部署和修改,并用于解决典型的计算光学成像问题。




深度学习光学设计

第一天

第一章 导论 

第一节 深度学习与光网络综述 
1.1 衍射神经网络 
1.2 片上集成光学神经网络 
第二节 深度学习与超表面反向设计综述 
第三节 光网络与超表面反向设计的挑战 
第四节 光网络与超表面反向设计未来的发展趋势 
第二章 软件基础知识(实操) 
第一节 Python 环境的搭建 
1.1 Anaconda 、Numpy、Matplotlib 和 Pandas 安装 
1.2 虚拟环境的搭建以及 Pytorch 安装 
1.3 Pytorch GPU 版本的安装 
第二节 Python 的基础教程 
2.1 Python 常见的数据结构与数据类型 
2.2 Numpy 基础教程 
2.3 Pandas 基础教程 
2.4 Matplotlib 基础教程 
第三节 Pytorch 基本教程 
3.1 数据操作 
3.2 数据预处理 
3.3 线性代数

第二天

第三章 深度学习 

第一节 机器学习 

第二节 机器学习中的关键组件 

2.1 数据 

2.2 模型 

2.3 损失函数 

2.4 优化算法 

第三节 机器学习的分类 

3.1 监督学习 

3.2 无监督学习 

3.3 半监督学习 

3.4 强化学习 

3.5 迁移学习 

第四节 深度学习 

4.1 深度学习的发展历程 

4.2 深度学习的进展 

4.3 人工神经网络 

第四章 深度学习模型(实操) 

第一节 线性神经网络实例 

1.1 线性回归 

1.2 softmax 回归 

第二节 多层感知机实例 

2.1 多层感知机 

2.2 模型选择、欠拟合和过拟合 

2.3 权重衰减 

2.4 Dropout 

第三节 卷积神经网络实例 

3.1 从全连接层到卷积 

3.2 通道和汇聚层 

3.3 卷积神经网络(LeNet) 

3.4 批量归一化 

3.5 残差连接 

第四节 循环神经网络实例

4.1 序列模型 

4.2 语言模型和数据集 

4.3 循环神经网络 

第五节 生成对抗网络实例 

5.1 概率生成模型 

5.2 变分自编码器 

5.3 生成对抗网络


第三天

第五章 超材料 

第一节 超材料概述 

第二节 光子晶体(COMSOL 实际操作) 

2.1 光子晶体基础和应用 

2.2 传递矩阵方法求解一维光子晶体能带 

2.3 平面波展开法求解一维光子晶体能带 

2.4 有限元法求解光子晶体能带 

2.4.1 二维正方晶格能带 

2.4.2 二维正方晶格光子晶体板能带 

2.4.3 二维三角晶格光子晶体板能带 

2.4.4 二维六角晶格光子晶体板能带 

2.5 光子晶体板中的连续谱束缚态(BIC)及其拓扑荷的计算 

第三节 超表面在光场调控中的作用 

3.1 相位调控 

3.2 光强调控 

3.3 偏振调控 

3.4 频率调控 

3.5 联合调控 

第四节 超表面仿真实例(COMSOL 实际操作) 

3.1 频率选择表面周期性互补开口谐振环 

3.2 超表面光束偏折器 

第五节 超构表面在量子光学中的研究与应用 

5.1 量子等离激元 

5.2 量子光源 

5.3 量子态的测量与操纵 

5.4 量子光学的应用 


第四天

第六章 基于马赫-增德尔干涉仪的光计算 

第一节 光计算及光神经网络的简介 

1.1 光计算的背景介绍 

1.2 光神经网络的发展与分类 

1.3 光神经网络的研究现状 

第二节 基于 MZI 的光神经网络原理 

2.1 全连接神经网络原理讲解 

2.2 MZI 级联的相干光矩阵计算原理 

2.3 N 阶酉矩阵分解 

2.4 基于 MZI 拓扑级联的酉矩阵通用架构 

第三节 训练数据集的获取与处理(Python 实操) 

3.1 Python 程序环境安装 

3.2 Pycharm 主要功能介绍 

3.3 数据集的获取方法 

3.4 训练数据集的前期处理 

第四节 酉矩阵通用架构的搭建(Python 实操) 

4.1 二阶酉矩阵的搭建 

4.2 clement 架构的搭建 

第五节 光神经网络的模型运行(Python 实操) 

第五天

第七章 全光衍射神经网络 

第一节 标量衍射理论基础 

1.1 惠更斯-菲涅耳原理 

1.2 瑞利-索莫菲衍射公式 

1.3 衍射角谱理论 

1.4 离散傅里叶变换 

第六节 光学衍射神经网络(Python 实操) 

2.1 人工神经网络结构 

2.2 光学衍射神经网络结构 

2.3 光学衍射神经网络实现手写数字识别 

2.4 光学衍射神经网络的应用 

第八章 超材料反向设计实例 

第一节 基于神经网络方法实现全介质超表面的设计(COMSOL 实操) 

1.1 超表面元的模拟 

1.2 超表面元的参数提取 

1.3 训练数据集的搭建 

1.4 预测模型的训练 

第二节 CNN 和 RNN 的组合寻找等离子体结构的光学特性(COMSOL 实操) 

第三节 DELAY 强化学习算法实现激光器的自动锁模控制 




深度学习计算光学成像专题

第一天:

第一章:光学成像基础

第一节:绪论

1.什么是光学成像?

2.光学成像进展

第二节:光学成像重要属性

1.物距、焦距、空间带宽乘积

2.分辨率、视场、景深

3.球差、慧差、场曲、畸变、色差、像差

4.点扩散函数、调制传递函数

第三节:成像质量评价指标

1.全参考评价

2.半参考评价

3.无参考评价

第四节:光学成像发展趋势

1.功能拓展 (相位、三维、非视距、穿云透雾、遥感)

2.性能改善(视场大小、分辨率、成像速度)

3.系统优化(小型化、廉价化、高效制造)

章:典型计算成像

第一节:计算机断层扫描(CT)成像

1.基本原理(X射线投影与探测)

2.基于深度学习的计算重建

3.技术进展与应用

第二节:压缩感知成像

1.稀疏表示与测量

2.典型重建算法与优化

3.压缩感知成像计算重建

4.应用与发展趋势

第三节:编码孔径成像

1.编码孔径设计原理

2.成像系统特性与优势

3.基于深度学习的图像重建

4.典型应用概述

第四节:非视距成像

1.成像场景概述

2.光传播模型与测量

3.成像重建算法

4.技术挑战与未来发展

第五节:无透镜成像

1.成像系统

2.光传播模型建模

3.基于深度学习的计算重建

4.技术挑战及发展

章:实操软件介绍及运行实践

第一节:Python环境的搭建

1.了解anaconda的安装

2.运行环境创建及激活

3.学习编译器spyder的使用

4.Shell脚本的使用

第二节:Python基本操作

1.变量、数据类型、控制流

2.函数、文件操作

第三节:深度学习环境实践

1.pytorch框架介绍

2.学习编译器spyder的使用

3.Shell脚本的使用

第四节:简单的深度学习网络实操

1.学习深度学习网络学习所需文件、运行方式

2.了解数据集导入、了解网络训练、了解网络测试


第二天

章 优化理论基础

第一节:引言与基础概念

1.最优化概述与定义

2.最优化问题的分类与形式化表示

3.目标函数与约束条件的基本概念

4.最优解的定义与性质

5.常见的最优化应用场景与实例 

6.稀疏理论及其分析

第二节:单变量最优化方法及其编程(理论+实操

1.单变量函数的最大值与最小值

2.黄金分割法与二分法

3.牛顿法与割线法

4.收敛性与收敛速度分析

5.实际问题中的应用与限制

第三节:多变量无约束优化及其编程(理论+实操

1.多变量函数的最优化问题

2.梯度下降法与共轭梯度法

3.牛顿法与拟牛顿法

4.收敛性与局部最优解

5.凸优化的基本理论与方法

第四节:多变量约束优化(理论+实操

1.等式约束与不等式约束的最优化问题

2.拉格朗日乘子法

3.KKT条件与约束优化的求解策略

4.内点法与序列二次规划方法

5.实际问题中的应用与复杂性分析

第五节:典型最优化方法

1.最小二乘法

2.ISTA方法

3.ADMM方法

4.方法编程实现(实操


第三天

章 深度学习基础

第一节:深度学习相关基础

1.了解神经网络的基本原理

2.了解反向传播和链式梯度计算

第二节:主流神经网络构型讲解

1.典型卷积网络介绍(ResNet、UNet)

2.Transformer

3.MLP

第三节:神经网络训练策略

1.全监督

2.弱监督(半监督)

3.无监督(自监督)

4.迁移学习(蒸馏、域自适应)

第四节:典型神经网络的搭建及训练(实操

主要对ResNet、UNet等选一二作为例子,搭建全监督、弱监督、无监督等训练模式,进行实操


第四天

第六章 计算成像实践

第一节:基于最优化理论的计算成像设计(理论+实操

(选取典型的计算成像示例,通过最优化理论进行计算重建)

1.目标函数设计

2.优化算法选择

(选择合适的优化算法进行目标函数的求解,如梯度下降法、共轭梯度法、交替方向乘子法(ADMM)等)

3.噪声处理与鲁棒性增强

(在重建过程中考虑噪声的影响,通过加入正则化项或鲁棒优化技术,提高算法的抗噪性和鲁棒性)

3.实操示例

第二节:基于深度学习的计算成像设计(理论+实操

(选取典型的计算成像示例,通过典型的神经网络进行计算重建)

1.系统架构设计和数据处理

2.深度学习模型设计及训练

3.算法优化策略与实现

4.性能评估


第五天

章 新兴深度神经网络设计实战创新实践

第一节:最优化理论的深度展开

1.最优化理论和深度学习的碰撞

2.如何将最优化方法展开成网络

第二节:讲解优化理论的深度展开具体设计

1.了解迭代收缩阈值网络论文大概

2.准备和制作数据集,参数的介绍

3.了解迭代收缩阈值网络的核心设计

第三节:如何从零开开始复现典型的迭代收缩阈值网络

1.学习阅读代码中的readme文档

2.了解代码执行的核心思想

3.介绍如何通过终端执行命令

第四节:将构建的迭代收缩阈值网络应用于无透镜计算成像实战

1.了解ImageNet数据集的基本内容及数据集整理

2.如何训练面向无透镜成像的新兴深度神经网络






课程特色及授课方式
(1)线上授课时间和地点自由,建立专业课程群进行实时答疑解惑,理论+实操授课方式结合大量实战案例与项目演练,聚焦人工智能技术在光学设计和计算光学成像领域的最新研究进展,课前发送全部学习资料,课程提供全程答疑解惑;
(2)完全贴合学员需求的课程体系设计,定期更新的前沿案例,由浅入深式讲解,课后提供无限次回放视频,免费赠送二次学习,发送全部案例资料,永不解散的课程群,可以与相同领域内的老师同学互动交流问题,让求知的路上不再孤单!
增值服务

1、凡参加人员将获得本次课程学习资料及所有案例模型文件;
2、课程结束可获得本次所学专题全部回放视频;
3、课程会定期更新前沿内容,参加本次课程的学员可免费参加一次本单位后期举办的相同专题课程(任意一期)




课程时间
深度学习光学设计
2024.08.12----2024.08.16(晚上19.00-22.00)

2024.08.19----2024.08.23(晚上19.00-22.00

腾讯会议 线上授课(共五天课程 提供全程视频回放)
深度学习计算光学成像:
2024.08.16-2024.08.17(上午9.00-11.30下午13.30-17.00)
2024.08.20-2024.08.21(晚上19.00.30-22.00)
2024.08.24-2024.08.25(上午9.00-11.30下午13.30-17.00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)




报名费用

课程费用:
深度学习光学设计、深度学习计算光学成像
每人每班¥4680元(包含会议费、资料费、提供课后全程回放资料)
报名优惠:提前报名缴费可享受300元早鸟价优惠(仅限前十名)
团报优惠:同时报名两门课程8880元

报名费用可开具正规报销发票及提供相关缴费证明、邀请函,可提前开具报销发票、文件用于报销





来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦