PyTorch团队首发技术路线图,近百页文档披露2024下半年发展方向

OpenCV学堂 2024-07-16 22:57



点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 新智元 授权


【导读】最近,PyTorch团队首次公布了开发路线图,由内部技术文档直接修改而来,披露了这个经典开源库下一步的发展方向。

如果你在AI领域用Python开发,想必PyTorch一定是你的老朋友之一。2017年,Meta AI发布了这个机器学习和深度学习领域的开源库,如今已经走到了第7个年头。

根据Assembly AI 2021年的统计数据,HuggingFace上最受欢迎的top 30模型都能在PyTorch上运行,有92%的模型是PyTorch专有的,这个占比让包括TensorFlow在内的一众竞争对手都望尘莫及。

就在7月10日,PyTorch的工程团队首次公开发布了他们的路线图文档,阐述2024年下半年的发展方向。

Meta共同创始人、领导PyTorch团队的Soumith Chintala在推特上官宣了这个消息。

他表示,希望公开工程师们的研发动机和目标。

「虽然所有PyTorch开发都在GitHub上公开,但各个PyTorch附属公司的团队编写的实际规划和路线图文档并不公开,因此我们决定做出改变,以提高透明度。」

PyTorch团队的技术项目经理Gott Brath也在论坛中发表了类似的声明。

我们一直在考虑,如何分享团队在PyTorch上所做的工作的路线图。我们每半年进行一次规划,因此这些是我们针对PyTorch中多个关键领域的2024年H2 OSS计划的一些公开版本。

这些文件基本就是PyTorch团队内部的文档和工作规划,删减掉了一些内容就发布出来成为路线图,其中涉及PyTorch的如下几个方面:

- 核心库与核心性能

- 分布式

- torchune、Torchrec、TorchVision

- PyTorch Edge

- 数据加载(DataLoading)

- 编译器核心及部署

- 开发者基础设施

每个文档都至少包含三个部分的内容,以OKR的思路展开:

- 背景

- Top5关注领域及目标:目标、关键结果、已知或未知风险以及相应缓解措施(最多一页)

- 提升工程水平的Top3~5个方面:BE Pillar分类、目标、指标/状态/具体目标、已知或未知风险以及缓解措施、影响/成本、优先级/信心程度(最多一页)

其中BE Pillar可以看作Meta写给开发团队的「五句箴言」,具体内容是:

Better Code, Better Doc, Empowering teams, Modern Code, Better Architecture

「最多一页」的规定不知道有没有戳到卷文档长度的开发人员,毕竟文档贵精不贵长,将众多开发需求精简到一页的内容不仅节省同事时间,也十分考验撰写者的功力。

此外,文档中也可以看出Meta开发团队的一些优秀思路,比如重视各个模块团队的协作、重视和外部合作伙伴的API集成和共同开发,重视与开源社区和开发者的互动。

当推出ExecuTorch这样的新代码库,或者想要提升PyTorch编译器影响力时,团队一般都会从两方面思路入手:一是铆足力气提升性能,把目标直接顶到SOTA;另一方面从深度集成入手,提供更多开箱即用的案例。

或许,这些都是Meta多年来在开源领域如鱼得水、风生水起的关键所在。

以下是各个文档内容的部分截取和概括。

原文地址:https://dev-discuss.pytorch.org/t/meta-pytorch-team-2024-h2-roadmaps/2226

核心库与核心性能

文档中涉及到的核心库包括TendorDict、torchao、NN、TorchRL等。

性能方面,PyTorch团队提出了在模型训练和推理方面实现SOTA性能的目标,措施包括引入架构优化技术和高性能kernel,与整个PyTorch技术栈形成搭配组合。

过去一年的时间见证了GenAI的快速发展,许多支持研究领域进行开发的外部库应运而生,但其中很多并不直接依赖PyTorch,这会威胁到PyTorch在科研领域的主导地位。

为了重新跟上节奏,PyTorch将为量化、稀疏化、MoE和低精度训练等常用开发技术提供支持,包括构建模块和API(主要集成在torchao中),帮助各类Transformer架构的模型提升性能。

torchao库可以支持研究人员在PyTorch框架内自定义高性能的dtype、layout和优化技巧,将使用范围扩展到训练、推理、调优等各种场景。

此外,核心库的更新将包括以下方面:

- 推出的自动优化库torchao已经取得了突破性的成功,下一步提升其代码组织性,并将其中的数值运算与核心库分开

- 解决TendorDict的核心模块性,支持加载/存储的序列化,并使其在eager模式下的运行速度提高2倍

- 继续上半年在内存映射加载(memory mapped load)方面的成功,继续提升模型加载/存储的性能和安全性

- 将TorchRL的开销降低50%

- 加入对NoGIL的核心支持

- 修复用户反映的TORCH_env变量不起作用的问题

文档中还提及了要实现对nn.transformer模块的弃用,表示会发布一系列教程和用例,展示如何使用torch.compile、sdpa、NJT、FlexAttention、custom_op、torchao等模块构建Transformer。

分布式

LLM的预训练通常横跨数十个甚至上千个GPU,而且由于模型的参数规模逐渐增大,推理和微调也很难用单个GPU完成。

因此,PyTorch下一步对「分布式」的布局全面涵盖了训练、推理、微调这三个环节,提出要达成超大规模分布式训练、高内存效率的微调、多主机分布式推理。

训练

PyTorch原生支持的并行模式主要包括以下几种:

- 完全分片数据并行(full sharded data parallel,FSDP)

- 混合分片数据并行(hybrid sharding data parallel,HSDP)

- 张量并行(tensor parallel,TP)

- 流水线并行(pipeline parallel,PP)

- 序列并行(sequence parallel,SP)

- 上下文并行(context parallel,CP)

PyTorch希望在TorchTitan中将各种并行方式进一步模块化,让开发者可以自由组合,根据需要实现N维并行。

文档中特别提到,对MoE和多模态这两种新兴的架构需要添加支持,比如专家并行、路由算法的优化。

除了TorchTitan本身的更新,分布式团队还需要与编译器团队进一步紧密合作,更好地与torch.compile模块集成,为大规模分布式场景带来额外的性能提升。

微调与推理

微调:联合torchtune,将FSDP2 LoRA/QLoRA方案投入使用,以及支持模型状态字典的NF4量化

推理:PP和DP已经成为分布式API的核心,下一步需要关注torchtitan的分布式推理,支持大模型PP+异步TP方式,将给出案例展示

文档中还提到,会将HuggingFace的推理API从PiPPy迁移到PyTorch(由HuggingFace完成)。

torchtune、TorchRec、TorchVision

torchtune

torchtune的推出旨在帮助用户更方便微调LLM,这也是官方给出的Llama模型微调的方案。

torchtune定义的「微调」范围非常广,主要可以概括为三类场景:

- 对特定领域数据集或者下游任务的模型适应

- 奖励和偏好建模,比如RLHF、DPO等

- 包含蒸馏与量化的训练过程

下半年的更新将支持为agent工作流进行的微调,同时着重关注微调性能的提升。

团队会与compile、core、distributed等模块进行合作,提供高效率微调,并在PyTorch生态内建立有代表性的微调性能基准。

由于torchtune也是一个较新的开源库,因此与开源社区的互动也必不可少。

文档提出发布博客文章和教程、举办技术讲座等方式,提升用户的理解;并会定义量化指标,衡量torchturn在LLM生态中的贡献份额。

除了开源社区,torchtune还会与至少一个合作伙伴集成,参与到它们的社区中,以促进torchtune的使用。

TorchVision

TorchVision作为CV领域内的绝对主宰者,技术也相对成熟,因此路线图中提出的更新很少。

团队将继续在预处理方向努力,在图像编码/解码空间中支持更多格式(如WebP、HEIC)和平台(如CUDA),并提升jpeg格式在GPU上的编码/解码性能。

TorchRec

TorchRec旨在提供大规模推荐系统中常用的稀疏性和并行性原语,将秋季推出第一个稳定版本TorchRec 1.0。

Edge

目前,开源库ExecuTorch已经推出了Alpha版本,主要依赖torch.compile和torch.export,用于支持移动设备和边缘设备(如AR/VR、可穿戴设备)上的模型分析、调试和推理。

下半年,Edge团队将推出xecuTorch的Beta版本,同时为Meta的Llama系列模型和其他开源模型提供PyTorch生态内的解决方案。

关键目标中主要涵盖两个方向。一是为设备上AI提供基础功能和可靠基础设施,包括:

- 确保C++和Python的API稳定性

- 实现一系列核心功能:支持模型压缩、代理缓存位置管理、数据和程序分离

二是为这个新生的代码库保驾护航,培育开源社区内的影响力,同时与Arm、Apple 和Qualcomm等公司保持良好合作关系。

其中社区影响力的目标甚至被量化到,要求代码在GitHub上得到3k标星,500次克隆(fork)。有兴趣的吃瓜群众可以去持续关注一下,看看团队能不能在年底完成这个OKR。

数据加载

基于Apache Arrow格式的HuggingFace datasets库凭借无内存限制的高速加载/存储,近几年异军突起,似乎抢走了PyTorch相关功能的风头。

数据加载的文档中开篇就提出了雄心壮志,要让TorchData库再次伟大,重新确立PyTorch在数据加载方面的主宰地位。

要达到这个目标,就需要让相关功能变得灵活、可扩展、高性能、高内存效率,同时实现傻瓜式操作,支持各种规模的多模态训练。

具体的更新目标包括以下几个方面:

- DataLoader的功能开发和接口都将贯彻GitHub优先的原则,DataPipes和DataLoader v2则将被逐步被弃用、删除

- 确保TorchTune、TorchTitan、HuggingFace、TorchData之间的清晰边界和良好互通性,支持多数据集、多模态数据加载

- HuggingFace使用StatefulDataLoader的API,确保兼容性,及时更新样例和测试用例

编译器核心及部署

PyTorch的编译器核心功能经过多年发展已经趋于完善,目前亟待弥补的只是对LLM和GenAI领域的更深度集成和更多优化支持。

路线图提出,要将torch.compile()函数带到LLM和GenAI的使用周期的各个方面(推理、微调、预训练),让重要模型在发行时就搭载原生的PyTorch编译。

为了实现这个目标,文档提出了很多具体措施,比如与torchtune与TorchTitan团队合作,提升编译性能,并在下半年发布至少两个高知名度模型的原生PyTorch编译版本。

此外,编译器可能添加可视化功能,在non-eager训练模式下生成表达前向计算/后向传播过程的模型图。

用户支持方面也有诸多规划,比如提升系统的监控性和可观察性,帮助户自行调试编译问题。关键目标还包括建立用户支持团队,针对几个关键领域(数据类、上下文管理等),解决开发者在GitHub等平台上发布的问题。

参考资料:

https://dev-discuss.pytorch.org/t/meta-pytorch-team-2024-h2-roadmaps/2226

https://x.com/soumithchintala/status/1811060935211049046

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/

OpenCV4系统化学习


深度学习系统化学习

推荐阅读

OpenCV4.8+YOLOv8对象检测C++推理演示

ZXING+OpenCV打造开源条码检测应用

攻略 | 学习深度学习只需要三个月的好方法

三行代码实现 TensorRT8.6 C++ 深度学习模型部署

实战 | YOLOv8+OpenCV 实现DM码定位检测与解析

对象检测边界框损失 – 从IOU到ProbIOU

初学者必看 | 学习深度学习的五个误区


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 76浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 151浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 163浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 151浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 66浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 66浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 163浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 91浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦