自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高