电动汽车电控系统的核心技术解析

智能汽车电子与软件 2024-07-09 17:19


关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

在当今日益增长的环境意识和技术进步的背景下,汽车行业正在迅速向电动化、智能化、网络化转型。在这一转型过程中,汽车电控系统(Electronic Control System)起着至关重要的作用。汽车电控系统不仅提高了汽车的性能、安全性和舒适性,还使汽车更加环保。它通过高度集成的电子硬件和软件组件,实现对汽车各个功能的精准控制,从而响应驾驶员的操作意图,并优化整车的性能表现。


随着技术的不断发展,汽车电控系统的功能和复杂性也在不断增加。从基本的驾驶员意图解析,到复杂的整车能量管理和远程控制,电控系统已成为现代汽车不可或缺的核心部分。本文将深入探讨汽车电控系统的各个方面,包括驾驶员驾驶意图解析、整车驱动控制、制动能量回馈控制、整车能量优化管理、充电过程控制、电控系统的上下电控制、电动化辅助系统管理、车辆状态的实时监测和显示、故障诊断与处理、远程控制、整车CAN总线网关及网络化管理、基于CCP的在线匹配标定、DC/DC与EPS控制、换挡控制功能,以及防溜车功能控制等。


通过深入了解汽车电控系统,我们不仅可以更好地理解现代汽车的工作原理,还可以展望未来汽车技术的发展方向,见证汽车行业如何通过创新满足日益增长的环保和安全需求。接下来,让我们一起探索汽车电控系统的奥秘,并了解它是如何将技术创新转化为提升驾驶体验和环境友好性的实际成果。


01 One

什么是汽车电控系统?

关于汽车电控系统,它其实并不是新能源电动汽车专有的,燃油车同样具备,只不过新能源电动汽车的电控系统更加的复杂,也更强大。


汽车电控系统,就是汽车电子控制系统,是由模块控制的系统总称,它由硬件和软件构成,电控其实就是车辆所有电子控制系统的软件+硬件的总称,我们可以将整个电控系统理解为车辆的神经系统,这个系统可以控制车辆的运行能力,所以电控系统越强大,车辆的控制与行驶能力越出色。今天咱们就来聊聊新能源汽车的整车控制系统。


整车控制系统由加速踏板位置传感器,制动踏板位置传感器,电子换挡器等输入信号传感器,整车控制器(VCU),电机控制器(MCU),电池管理系统(BMS)等控制模块和驱动电机,动力电池等执行元件组成。



应用图


组成构架图



汽车上的这些控制器通过CAN网络来通信。CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。最初,CAN被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。比如:发动机管理系统、变速箱控制器、仪表装备、电子主干系统中,均嵌入CAN控制装置。


02 Two


整车控制系统的功能

1.驾驶员驾驶意图解析

主要是对驾驶员操作信息及控制命令进行分析处理,也就是将驾驶员的油门信号和制动信号根据某种规则,转化成电机的需求转矩命令 。因而驱动电机对驾驶员操作的响应性能完全取决于整车控制的油门解释结果,直接影响驾驶员的控制效果和操作感觉。


2.整车驱动控制

根据驾驶员对车辆的操纵输入(加速踏板、制动踏板以及选档开关)、车辆状态、道路及环境状况,经分析和处理,向整车管理系统发出相应的指令,控制电机的驱动转矩来驱动车辆,以满足驾驶员对车辆驱动的动力性要求;同时根据车辆状态,向整车管理系统发出相应指令,保证安全性、舒适性。

3.制动能量回馈控制

整车控制器根据加速踏板和制动踏板的开度、车辆行驶状态信息以及动力电池的状态信息(如SOC值)来判断某一时刻能否进行制动能量回馈,在满足安全性能、制动性能以及驾驶员舒适性的前提下,回收部分能量。包括滑行制动和刹车制动过程中的电机制动转矩控制。


4.整车能量优化管理

通过对电动汽车的电机驱动系统、电池管理系统、传动系统以及其它车载能源动力系统(如空调、电动泵等)的协调和管理,提高整车能量利用效率,延长续驶里程。

在纯电动汽车中,电池除了给驱动电机供电以外,还要给其他电器供电。因此,为了获得最大的续驶里程,整车控制器将负责整车的能量管理,以提高能量的利用率。在电池的SOC值比较低的时候,整车控制器将对其他电器发出指令,限制其他电器的输出功率,或关闭部分辅助设备来增加续驶里程。


5.充电过程控制

与电池管理系统共同进行充电过程中的充电功率控制,整车控制器接收到充电信号后,应该禁止高压系统上电,保证车辆在充电状态下处于行驶锁止状态;并根据电池状态信息限制充电功率,保护电池。


6.电控系统的上下电控制

6.1高压上电
点火钥匙ON档,BMS、MCU当前状态正常、且在之前一次上下电过程中整车无严重故障

  • BMS、MCU初始化完成,VCU确认状态

  • 闭合电池继电器

  • 闭合主继电器

  • MCU高压上电

  • 如档位在N档,仪表显示Ready灯点亮


6.2下电顺序
纯电动车下电只需点火钥匙打到OFF档,即可实现高压、低压电的正常下电

  • 点火钥匙到OFF档,主继电器断开、MCU低压下电

  • 辅助系统停止工作,包括DC/DC、水泵、空调、暖风

  • BMS新开电池继电器

  • 整车控制器下电 (VCU) 整车控制器在下电前会存储行车过程中发生的故障信息


7.电动化辅助系统管理
电动化辅助系统包括电动空调、电制动、电动助力转向。整车控制器应该根据动力电池以及低压电池状态,对 DC/DC、电动化辅助系统进行监控。

8.车辆状态的实时监测和显示

整车控制器应该对车辆的状态进行实时检测,并且将各个子系统的信息发送给车载信息显示系统,其过程是通过传感器和 CAN总线,检测车辆状态及其动力系统及相关电器附件相关各子系统状态信息,驱动显示仪表,将状态信息和故障诊断信息通过数字仪表显示出来。

9.故障诊断与处理

监视整车电控系统,进行故障诊断,并及时进行相应安全保护处理。根据传感器的输入及其它通过CAN总线通讯到的电机、电池、充电机等信息,对各种故障进行判断、等级分类、报警显示;存储故障码,供维修时查看。故障指示灯只是出故障类型和部分故障码。在行车过程中,根据故障内容作故障诊断与处理。


整车的故障等级进行4级划分:

  • 一级-致命故障

故障后处理: 紧急断开高压


  • 二级-严重故障: 

故障后处理: 二级电机故障零扭矩,二级电池故障20A放电电流限功率


  • 三级-一般故障

故障后处理: 进入跛行工况/降功率


  • 四级-轻微故障

故障后处理: 只仪表显示,四级故障属于维修提示,但是VCU不对整车进行限制。四级能量回收故障,仅停止能量回收,行驶不受影响。


10.远程控制:

10.1远程查询功能
用户可以通过手机APP实时查询车辆状态,实时了解车辆的状况包括:剩余SOC值、续驶里程等。

10.2远程空调控制
无论是在炎热的夏季还是在寒冷的冬季,用户在出门前就可以通过手机指令实现远程的空调制冷、空调暖风和除霜功能。

10.3远程充电控制
用户离开车辆时将充电枪插入充电桩,并不进行立即充电,可以利用电价波谷并在家里实时查询SOC值,需要充电时通过手机APP发送远程充电指令,进行充电操作



11.整车CAN总线网关及网络化管理

电动轿车CAN总线系统由中央控制器、电池管理系统、电机控制系统、制动控制系统、仪表控制系统组成。各个控制器之间通过CAN总线进行通信,以实现传感器测量数据的共享、控制指令的发送和接收等,并使各自的控制性能都有所提高,从而提高系统的控制性能。它们之间的通信与信息类型为信息类和命令类。信息类主要是发送一些信息,如传感器信号、诊断信息、系统的状态。命令类则主要是发送给其他执行器的命令。

12.基于CCP的在线匹配标定

基于CCP的在线匹配标定协议采用主-从式通信方式,主设备通过CAN总线与多台从设备相连接,主设备是测量标定系统,从设备是需要标定的ECU,主设备首先与其中一个从设备建立逻辑链接。建立逻辑连接后,主、从设备之间所有的数据传递均由主机控制,从设备执行主设备命令后返回包含命令响应值或错误代码等信息的报文,同时从设备可以根据主设备通过控制命令所设置的列表信息,来定时地向主设备传送变量信息,数据的传递是由主设备初始化并且由从设备来执行的,并且是由固定的循环采样频率或者事件触发的。



13.DC/DC控制与EPS控制


13.1 DC/DC控制
DC/DC变换器即是把直流电压变换为另一数值的直流电压,是开关电源技术的一个分支。它是由半导体功率器件作为的开关管、二极管、电感、电容、负载和直流电源构成的,通过使带滤波器的负载电路和直流电压时而接通、时而关断,使得负载上得到另一个直流电压。



13.2 EPS控制

电动助力式转向系统利用电动机产生的转矩,经过转向系统减速及传递机构转化后协助驾车者进行动力转向。不同车的EPS结构部件尽管不一样,但基本原理是一致的。在检测到有效汽车点火信号后,当转向轴转动时,转矩或转角传感器将检测到的转矩和转角信号输出至电子控制单元ECU。

ECU根据转矩、转角信号,汽车速度、轴重负载信号等进行分析和计算,得出助力电动机的转向和目标助力电流的大小,从而实现助力转向控制。



14.换挡控制功能

换挡控制功能关系着驾驶员的驾驶安全,正确理解驾驶员意图,以及识别车辆合理的档位,在基于模型开发的档位管理模块中得到很好的优化。能在出现故障时作出相应处理保证整车安全,在驾驶员出现档位误操作时通过仪表等提示驾驶员,使驾驶员能迅速做出纠正。

15.防溜车功能控制

电动汽车在坡上起步时,驾驶员从松开制动踏板到踩油门踏板过程中,会出现整车向后溜车的现象。在坡上行驶过程中,如果驾驶员踩油门踏板的深度不够,整车会出现车速逐渐降到0然后向后溜车现象。因此为了防止汽车在坡上起步和运行时向后溜车现象,在整车控制策略中增加了防溜车功能。

溜车功能可以保证整车在坡上起步时,向后溜车小于10CM;在整车坡上运行过程中如果动力不足时,整车车速会慢慢降到0,然后保持0车速,不再向后溜车。


来源:商用车诊断仪

-END-

关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

智能汽车电子与软件 专注于汽车电子领域的信息交融平台,涵盖汽车电子行业资讯、市场动态、技术干货、知识见解、行业趋势等资讯深度覆盖。
评论 (0)
  • 真空容器内部并非wan全没有压强,而是压强极低,接近于零。真空状态下的压强与容器内外气体的分子数量、温度以及容器本身的性质有关。一、真空与压强的基本概念真空指的是一个空间内不存在物质或物质极少的状态,通常用于描述容器或系统中气体的稀薄程度。压强则是单位面积上所受正压力的大小,常用于描述气体、液体等流体对容器壁的作用力。二、真空状态下的压强特点在真空状态下,容器内部的气体分子数量极少,因此它们对容器壁的作用力也相应减小。这导致真空容器内部的压强远低于大气压强,甚至接近于零。然而,由于技术限制和物理
    锦正茂科技 2025-03-29 10:16 124浏览
  • 文/杜杰编辑/cc孙聪颖‍3月11日,美国总统特朗普,将自费8万美元购买的特斯拉Model S,开进了白宫。特朗普此举,绝非偶然随性,而是有着鲜明的主观意图,处处彰显出一种刻意托举的姿态 。特朗普也毫不讳言,希望他的购买能推动特斯拉的发展。作为全球电动车鼻祖,特斯拉曾凭借创新理念与先进技术,开辟电动汽车新时代,引领行业发展潮流。然而当下,这家行业先驱正深陷困境,面临着前所未有的挑战。就连“钢铁侠”马斯克自己都在采访时表示“非常困难”,的确是需要美国总统伸手拉一把了。马斯克踏入白宫的那一刻,特斯拉
    华尔街科技眼 2025-03-28 20:44 169浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 87浏览
  • 真空容器的材料选择取决于其应用场景(如科研、工业、医疗)、真空等级(低真空、高真空、超高真空)以及环境条件(温度、压力、化学腐蚀等)。以下是常见材料及其优缺点分析:1. 不锈钢(如304、316L)优点:耐腐蚀性强:316L含钼,耐酸碱和高温氧化,适合高真空和腐蚀性环境。高强度:机械性能稳定,可承受高压差和外部冲击。低放气率:经电解抛光或镀镍处理后,表面放气率极低,适合超高真空系统(如粒子加速器、半导体镀膜设备)。易加工:可焊接、铸造,适合复杂结构设计。缺点:重量大:大型容器运输和安装成本高。磁
    锦正茂科技 2025-03-29 10:52 44浏览
  •        随着智能驾驶向L3级及以上迈进,系统对实时性的要求已逼近极限。例如,自动紧急制动(AEB)需在50毫秒内完成感知、决策到执行的全链路响应,多传感器数据同步误差需小于10微秒。然而,传统基于Linux-RT的方案在混合任务处理中存在天然缺陷——其最大中断延迟高达200微秒,且多任务并发时易引发优先级反转问题。据《2024年智能汽车电子架构白皮书》统计,超60%的车企因实时性不足被迫推迟舱驾一体化项目落地。为旌电子给出的破局之道,是采用R5F(实
    中科领创 2025-03-29 11:55 181浏览
  • 在工业控制与数据采集领域,高精度的AD采集和实时显示至关重要。今天,我们就来基于瑞芯微RK3568J + FPGA国产平台深入探讨以下,它是如何实现该功能的。适用开发环境如下:Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:Ubuntu18.04.4 64bit、VMware15.5.5U-Boot:U-Boot-2017.09Kernel:Linux-4.19.232、Linux-RT-4.19.232LinuxSDK:LinuxSD
    Tronlong 2025-03-28 10:14 145浏览
  • 在智能语音设备开发中,高音量输出是许多场景的核心需求,例如安防警报、工业设备提示、户外广播等。 WT588F02BP-14S 和 WTN6040FP-14S 两款语音芯片,凭借其内置的 D类功放 和 3W大功率输出 能力,成为高音量场景的理想选择。本文将从 性能参数、应用场景、设计要点 三大维度,全面解析这两款芯片的选型策略。一、核心参数对比与选型决策参数WT588F02BP-14SWTN6040FP-14S输出功率3W@4Ω(THD<1%)3W@4Ω(THD<0.8%)功
    广州唯创电子 2025-03-28 09:15 99浏览
  • 本文介绍瑞芯微RK356X系列复用接口配置的方法,基于触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。复用接口介绍由下图可知,红圈内容当前引脚可配置为SPI0或者PWM0功能。由标准系统固件以及相关系统手册可得,当前接口默认配置为SPI0功能:console:/ # ls dev/spidev0.0dev/spidev0.0再由原理图可知当前GPIO为GPIO0_C3
    Industio_触觉智能 2025-03-28 18:14 109浏览
  • 一、真空容器的定义与工作原理真空容器是一种能够创造并保持一定真空度的密闭容器。其工作原理通常涉及抽气系统,该系统能够逐渐抽出容器内部的气体分子,从而降低容器内的气压,形成真空环境。在这个过程中,容器的体积并不会因抽气而改变,但容器内的压力会随着气体的抽出而逐渐降低。二、真空容器并非恒压系统真空容器并非一个恒压系统。恒压系统指的是在外部环境变化时,系统内部压力能够保持相对稳定。然而,在真空容器中,随着气体的不断抽出,内部压力会持续降低,直至达到所需的真空度。因此,真空容器内部的压力是变化的,而非恒
    锦正茂科技 2025-03-29 10:23 122浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 68浏览
  • 本文介绍OpenHarmony5.0 DevEco Studio开发工具安装与配置,鸿蒙北向开发入门必备!鸿蒙北向开发主要侧重于应用层的开发,如APP开发、用户界面设计等,更多地关注用户体验、应用性能优化、上层业务逻辑的实现,需要开发者具备基本的编程知识、对操作系统原理的简单理解,以及一定的UI设计感。由触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,支持开源鸿蒙OpenHarmony3.2至5.0系统,适合鸿蒙开发入门学习。下载与安装开发工具点下面链接下载:
    Industio_触觉智能 2025-03-28 18:16 155浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 56浏览
  • 3月27日,长虹中玖闪光超高剂量率电子射线放射治疗系统(e-Flash)临床试验项目在四川大学华西医院正式启动,标志着该项目正式进入临床试验阶段。这不仅是我国医学技术领域的一项重大突破,更是我国在高端医疗设备研发和应用方面的重要里程碑。e-Flash放射治疗系统适用于哪些病症,治疗周期为多久?会不会产生副作用?治疗费用高不高……随着超高剂量率电子射线放射治疗系统(e-Flash)正式进入临床试验阶段,社会各界对该项目的实施情况尤为关注。对此,中国工程院院士范国滨,以及四川大学华西医院、四川省肿瘤
    华尔街科技眼 2025-03-28 20:26 223浏览
  • 语音芯片在播放音频时出现电流声是嵌入式音频系统开发中的常见问题,直接影响用户体验。唯创电子WT系列语音芯片在智能家居、工业控制等领域广泛应用,本文将从PWM直推输出与DAC+功放输出两类典型电路架构出发,系统化分析电流声成因并提供工程级解决方案。一、PWM直推输出电路电流声诊断1.1 现象特征高频"滋滋"声(8kHz-20kHz)声音随系统负载变化波动静音状态下仍存在底噪1.2 核心成因分析(1) 电源干扰开关电源纹波超标:实测案例显示,当12V转3.3V的DC-DC电源纹波>80mVpp时,P
    广州唯创电子 2025-03-28 08:47 94浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦