电动汽车动力域控制器设计研究

原创 智能汽车设计 2024-07-09 07:23

【摘要】本文先分析电动汽车域控制器的发展背景及演变历程,然后基于一款纯电动汽车,对整车电子电气架构及动力域控制器进行设计,并设定其动力域控制器的性能目标,还为其设计一种硬件分时复用和软件模块化的动力域控制器方案,对原子服务功能、大数据驱动下的服务功能、信息安全功能进行定义。最后,通过台架性能试验、整车性能试验及整车可靠性试验结果,验证其动力域控制器的关键性能指标,希望为行业电动汽车域控制器设计提供参考。

1 引言

近年来,随着汽车加速电动化和智能化,汽车中的电子控制器单元(Electronic Control Unit,ECU)数量激增。据了解,从1993年到2010年,奥迪A8车型上使用的ECU数量从5个骤增至100余个,奥迪A8L装配的ECU数量在2013年也已超过100个[1]。而随着电动化快速普及和智能化迅速升级,通过增加ECU数量已非良策。由于不同ECU来自不同供应商,无论是整车功能的开发还是后期的维护升级,车企均需要和这些供应商分别沟通协作,过程繁琐,整车开发周期也因此拉长,人力物力成本随之增长[2]。此种背景下,传统分布式整车电子电气架构出现集中化演变趋势,原先相互孤立的ECU相互融合,分组集中控制,域控制器(Domain Control Unit,DCU)应运而生[3]

借由域控制器,可实现全车100余ECU到少数几个DCU的变化,控制功能迅速集中,有利于降成本[4];域控制器具备算力可扩展、更灵活的整车远程升级(Over-the-air Technology,OTA),使得汽车企业可以为用户实现不断迭代升级的功能体验[4];更为关键的是,域控制器打破了传统感知+算法+ECU的捆绑式开发模式,多种传感器的感知数据处理可以实现与控制器计算平台的数据融合,车辆能够及时作出更安全的决策[5]。前述的成本、安全或维护升级问题迎刃而解。因此,研究域控制器已成为各大主机企业和电控零部件企业的热门课题。

2 整车电子电气架构设计

2.1 域控制器的分类

目前行业对电动车的域控制器暂无统一的分类标准,但从目前来看,域控制器主要有两种分类方式。一种是按区域划分,具体可分为前区域控制器、左区域控制器、右区域控制器等,由于集中度较高、技术难度较大等原因,目前仅有特斯拉等少数企业采用这样的分类方式;此种分类方式对应的整车电子电气架构中,配置一个中央计算模块及3个域控制器,分别为前车身域控制器、左车身域控制器、右车身域控制器,如图1所示。

图1 按区域划分的域控制器示意图

相较于上述分类方式,按照功能划分的方式更为各主机企业接受。目前多数车企或是零部件企业都采用这一方式。从目前来看,主要分类有动力域控制器、底盘域控制器、车身域控制器、座舱域控制器、自动驾驶域控制器等,不同企业间略有差异。其中,动力域控制器,主要集成的是动力总成相关控制功能,主要负责动力总成的优化与控制。随着新能源汽车电驱和电控系统集成化发展,动力域控制器也越来越多地应用。按功能划分的域控制器示意如图2所示。

图2 按功能划分的域控制器示意图

本文研究的是一款纯电动汽车动力域控制器的设计,该域控制器的划分方式与前述按功能划分的方式相似,是一款动力域控制器。但功能与前述略有不同,该动力域控制器集成了动力域及部分底盘部件和车身部件的控制,在整车电子电气架构中扮演着核心控制作用。为表述和理解方便,下文一律称为“动力域控制器”。

2.2 本文研究的电动汽车电子电气架构


本文研究的电动汽车电子电气架构已由传统的分布式演变为当前的“三域”架构,如图3所示。

图3 “三域”整车电子电气架构示意图

智能驾驶域控制器,基于环境感知、精准定位、控制与执行等项关键技术,实现车道保持、自适应巡航、自动泊车等项功能。座舱域控制器,应用异构操作系统,实现娱乐系统、驾驶员监控、车联网、OTA和音频处理功能集成。动力域控制器,是整车智能大脑,实现动力学控制、动力电池核心算法、充电控制、整车一体化热管理、车身控制和决策的逻辑和算法等。动力域控制器功能集成示意如图4所示。

图4 动力域控制器功能集成示意图

3 动力域控制器设计


3.1 性能目标


目前主要以博世、德尔福、大陆为代表的国外技术公司长期垄断动力系统的控制器产品,开发具有自主知识产权、功能性能与国际一流产品相当的动力域控制器,化解电动汽车域控制技术“卡脖子”迫在眉睫。本文研究的电动车动力域控制器,主要性能目标见表1。


表1 动力域控制器的主要性能目标

3.2 分时复用的硬件


应用分时复用技术,设计动力域控制器的硬件,实现集成整车控制器、空调控制器、中央网关、真空泵控制器、水泵控制器,微处理芯片、电源芯片、存储芯片分别由原来的5个减少为1个,通信芯片由原来的8个减少为4个。在控制器硬件的安全性能、控制精度、采样精度和响应水平均提高的情况下,成本下降30%。未集成的5个控制器如图5所示,集成后的动力域控制器如图6所示。


图5 动力域控制器需集成的5个硬件示意图

图6 分时复用的动力域控制器硬件示意图

3.3 模块化的应用层软件


应用Autosar软件架构,开发虚拟总线软件模块,软件和硬件解耦、应用层软件解耦,实现软件模块可重用、易移植。应用层软件有模式管理、整车动力学控制、热管理、智能座舱交互等7个功能模块、17个子功能。具体见表2。


表2 动力域控制器模块化软件

3.4 核心功能定义


3.4.1 原子服务功能


在应用层软件的模块化、标准化基础上,进一步识别出不可再分的最小控制单元,建立标准的软件库函数和API接口,开发可供不同软件应用调用的原子服务功能。动力域控制器的应用层软件根据功能的时序及其功能特性,调用相关的原子服务,开展基于逻辑的组合和排序,实现面向服务的敏捷开发。


本文研究的动力域控制器,开发了8项原子服务功能,包括上下电控制、挡位控制、制动灯控制、转向灯控制、电子驻车控制、转向控制、制动压力控制、电机驱动控制。8个原子服务可以任意分组或任意数量的组合,形成新的整车控制应用软件,如图7所示。


图7 原子服务功能示意图

3.4.2 大数据驱动下的服务功能

大数据驱动下的服务建立在由车端的动力域控制器、车载远程监控终端TBOX和车外的远程监控云平台三层架构之上。电动汽车均连接在远程监控云平台上,在使用过程中,云平台实时采集整车数据,应用边缘计算技术开展用户驾驶行为分析,并将结果反馈给动力域控制器。基于云端到车端的数字化协调控制,实现千人千面的服务,如图8所示。

图8 大数据驱动的服务功能示意图

3.4.3 信息安全功能

因电动汽车均与远程监控云平台连接,本文设计的动力域控制器从车端和云端两个维度确保整车信息安全,防止车辆被攻击。

1)车端,3个方面。①协议安全,针对关键信号,应用身份认证和信号有效性识别技术,杜绝外接设备发出非法信号造成的干扰;②交互安全,针对跨域的信息交互,基于时间敏感管理完成信号合法性检查,应用加密算法完成信号正确性检查;③网络安全,应用安全网关过滤非法ID,降低网络泛洪攻击造成的网络瘫痪风险。

2)云 端,3个 方 面。①访 问 安 全,应 用GRE隧 道 和VPN专线技术,保证云端数据与公网物理隔离,降低网络数据拦截风险;②通信安全,私有化安全交互协议,应用时间戳、底层心跳包,有效抵御中间攻击和回滚攻击;③链路安全,车端和云端的交互数据应用非对称秘钥体系加密,保证业务安全。

4 设计方案验证

4.1 硬件台架试验验证


根据法规及多年实践积累的试验项目,设计了硬件台架试验验证方案,共实施试验9类86项,试验全部验证了动力域控制器的硬件设计可行。其中,最重要的试验项目有5类15项,见表3。


表3 整域控制器硬件台架试验项目及结论

4.2 整车性能试验验证


使用本款动力域控制器的整车,为达成整车经济性、动力性目标,重点针对全加速踏板起步工况、模式转换工况、驻坡工况开展驾驶性攻关,达到主观驾驶平顺无抖动。整车功能性能试验结果见表4。


表4 整车性能试验结论

4.3 整车可靠性试验验证


使用该动力域控制器的整车,开展整车可靠性试验,试验道路及里程分布见表5,试验历时6个月,折合实际使用里程约30万km,过程中动力域控制器表现出安全、可靠的特性。整车可靠性试验结论见表5。


表5 整车可靠性试验结论

5 总结


本文基于一款纯电动汽车设计了整车电子电气架构及动力域控制器,设定了动力域控制器的性能目标,设计了一种硬件分时复用和软件模块化的动力域控制器方案,定义了原子服务功能、大数据驱动下的服务功能、信息安全功能,通过台架性能试验、整车性能试验及整车可靠性试验结果,验证了动力域控制器的关键性能指标,供纯电动汽车域控制器设计开发参考。


参考文献:


[1]吴成东.传统汽车应用域控制器与主干网技术路线探索[J].汽车电器,2021(3):43-45.


[2]郭炎菊,查云飞,陈文强,等.智能汽车电子电气架构综述[J].汽车文摘,2021(8):19-24.


[3]高丽,杨依楠.纯电动汽车整车控制器技术及发展[J].汽车实用技术,2021(6):20-22.


[4]黎伟,喻晓勇,匡小军.浅析汽车电子架构发展与典型域控制器[J].时代汽车,2021(16):163-164.


[5]刘佳熙,丁锋.面向未来汽车电子电气架构的域控制器平台[J].中国集成电路,2019(9):82-87.


END

智能汽车设计 关注智能汽车发展,分享智能汽车知识!
评论 (0)
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 183浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 105浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 91浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 96浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 151浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 222浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 210浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 150浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 119浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 126浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 98浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦