“金刚石+氧化镓”助力更高性能射频器件

原创 DT半导体材料 2024-07-08 20:13
由日本九州大学、日本国家先进工业技术研究所 (AIST)、九州工业大学、埃及阿斯旺大学和日本日埃科技合作中心 (E-JUST 中心) 的组成的联合研究团队,报道了“利用射频磁控溅射在单晶金刚石(111)晶圆上异质外延生长β-Ga2O3薄膜”相关研究成果,该研究有助于进一步研究可扩展的β-Ga2O3/金刚石异质结构,以用于未来更高性能的光电子器件。相关研究成果以“Heteroepitaxial growth of β-Ga2O3 thin films on single crystalline diamond (111) substrates by radio frequency magnetron sputtering”为题,发表于Applied Physics Express期刊。
  氧化镓正逐渐成为下一代大功率和射频电子器件的明星材料
近来,氧化镓(Ga2O3)作为一种“超宽禁带半导体”材料,得到了持续关注。β-Ga2O3的带隙为4.7-4.9 eV,理论击穿场强为8 MV cm-1,电子饱和速度高达2×107cm s-1与第三代半导体碳化硅(SiC)、氮化镓(GaN)相比,其带隙远高于碳化硅的3.2eV和氮化镓的3.39eV,更宽的禁带宽度意味着电子需要更多的能量从价带跃迁到导带,因此氧化镓具有耐高压、耐高温、大功率、抗辐照等特性。此外,β-Ga2O3能够从熔体中生长出块状基底,使其与碳化硅和氮化镓相比具有显著的成本优势。并且,在同等规格下,宽禁带材料可以制造die size更小、功率密度更高的器件,节省配套散热和晶圆面积,进一步降低成本。
随着量子信息、人工智能等高新技术的发展,半导体新体系及其微电子等多功能器件技术也在更新迭代。虽然前三代半导体技术持续发展,但也已经逐渐呈现出无法满足新需求的问题,特别是难以同时满足高性能、低成本的要求。
相比其他半导体材料,第四代半导体材料拥有体积更小、能耗更低、功能更强等优势,可以在苛刻的环境条件下能够更好地运用在光电器件、电力电子器件中。
其中,氧化镓(Ga2O3)由于自身的优异性能,在紫外探测、高频功率器件等领域吸引了越来越多的关注和研究,正逐渐成为下一代大功率和射频电子器件的材料。
  散热难题:掣肘了氧化镓射频器件
相比已经得到市场应用的硅、碳化硅、氮化镓等材料,氧化镓的散热问题一直是亟待解决的的一大关键性问题,阻碍了氧化镓的商业化应用。因为半导体材料的热导率与后续器件的性能息息相关。
从具体数据来看,氧化镓的热导率在10-30W/m-K之间,还不到Si的1/5,SiC的1/20,这对功率器件性能和应用来说是硬伤。严重的自热效应导致器件功率和频率难以协同提升,很大程度上掣肘了氧化镓射频器件的发展。这也是氧化镓研究团队必须攻克的核心难题。

针对这一问题的解决,目前学界通常用衬底减薄、外接散热系统以及异质集成等方法来提升器件的导热性能。但是,从实验结果来说,衬底减薄和外接散热系统都有点治标不治本,无法从根本上提升材料的导热性能。

那什么是解决氧化镓导热差这一问题的最佳方案呢?

有研究指出,在高导热系数衬底材料上采用异质外延或者异质集成技术来制备异质集成 β-Ga2O3器件可以有效解决氧化镓材料导热系数低。
  “金刚石+氧化镓”组合“出道”
金刚石作为自然界中热导率最高的材料,其热导率高达 2200 W/ (m·K),是一种极具竞争力的新型散热材料。采用高导热率的金刚石作为氧化镓基功率器件的散热衬底,有望改善其缺陷,实现高频、高功率的应用的不二之选。

另外,β-Ga2O3/金刚石异质结构组合拥有另一个吸引人的特性,即金刚石与硼可轻松进行p型掺杂,而氧化镓能带结构的价带无法有效进行空穴传导,因此目前还没有排列p型Ga2O3的可行方法,Ga2O3本身是n型的


此前曾报道过范德华力和 β-Ga2O3在金刚石上的晶圆键合等技术,但尚未报道过射频溅射等直接生长工艺。直接生长方法往往更受青睐,因为其生产规模大且成本更低。

图1:(a)单晶金刚石(111)上生长的射频溅射β-Ga2O3薄膜结构图,以及Ga2O3/金刚石界面上氧原子和碳原子之间的预期原子键合。(b)所生长薄膜的厚度与衬底温度之间的关系。(c、d)分别使用2θ-θ和2θ扫描模式的X射线衍射(XRD)图。(e)600°C和700°C下所生长样品的X射线衍射摇摆曲线(-201)峰值。

在实验中,该研究团队使用日本住友公司生产的商用未掺杂Ga2O3靶件和Ib型(111)单晶金刚石衬底进行射频磁控溅射(RFMS)(图1)。射频磁控溅射的生长压力为1.5x10-1Pa。腔室内的气体为不含氧的氩气流。射频功率为50W,沉积时间为48小时。β-Ga2O3在金属掩膜界定的圆形区域内生长。
虽然衬底温度较高时(700°C材料厚度315nm),Ga2O3晶体的生长速度明显减慢,但温度较低时,Ga2O3晶体的品质却有所下降。
事实上,根据X射线衍射分析,400°C时,材料似乎为非晶质。500°C样品包含混合的β相Ga2O3和γ相Ga2O3。600°C和700°C薄膜为未混合的β-Ga2O3。不过,600°C时,材料是多晶体,具有多种不同的平面取向。700°C样品主要呈(-201)取向,其摇摆曲线峰值明显较窄,半高全宽(FWHM)值为3.0°,相比之下,600°C材料的半高全宽值为4.1°。
研究人员评论道:“衬底温度较高可促进Ga2O3的β相结晶,降低金刚石的表面能,从而刺激金刚石阶层上原子迁移的流动性,提高逐层生长的能力。”
根据极图X射线衍射分析,金刚石(111)和β-Ga2O3(-201)之间的晶格失配为-1.6-2.2%,堪比β-Ga2O3/蓝宝石(1.7-4.8%)。
研究团队进一步评论道:“发现了(-202)和(002)两个独特平面,这两个平面为(-201)β-Ga2O3纹理,与含六个不同面内旋转域的(111)金刚石纹理相当。”

图2:衬底温度不同时,所生长薄膜的扫描电子显微镜(SEM)俯视图:(a)400°C,(b)500°C,(c)600°C,(d)700°C。小图:(d)岛状与层状混和生长模式下所生长薄膜的结构图。

对样品表面进行扫描电子显微镜检查(图2),结果显示,700°C下生长的薄膜表面出现了山状晶体。研究团队解释说:“这些表面结构可能表明,β-Ga2O3薄膜是通过岛状与层状混和生长模式(Stranski–Krastanov growth mode)在单晶金刚石(111)衬底上生长的,即生长早期阶段为二维(2D)模式,但所生长薄膜超过临界厚度时,就会转变为三维(3D)岛状生长。要使单晶金刚石(111)上生长的β-Ga2O3薄膜表面进一步平坦化,就需要优化薄膜厚度。”
研究人员还利用X射线光电子能谱(XPS)测定了不同生长温度下薄膜中的元素比例。700°C时所生长样品的O/Ga比率为1.31,在所有样品的O/Ga比率中,最接近理想状态下Ga2O3的O/Ga比率(1.5)。其他温度下O/Ga比率均低于1.16。
研究团队评论道:“总的来说,X射线光电子能谱的结果表明,通过溅射进行高衬底温度沉积可有效抑制氧缺陷的产生,且衬底温度为700°C时,可在单晶金刚石(111)衬底上生长原子成分可接受的β-Ga2O3薄膜。”
文章链接https://doi.org/10.35848/1882-0786/acfd07
   活动推荐
第八届国际碳材料大会暨产业展览会——金刚石前沿论坛

DT半导体材料 聚焦于半导体材料行业的最新动态
评论
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 64浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 88浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 142浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 95浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 117浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 82浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 72浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 116浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 133浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 124浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 93浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 93浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦