双向收发的信号应该在哪进行串联端接?分享几个实用设计方法!

原创 高速先生 2024-07-08 11:36


公众号 | 高速先生

作者 | 黄刚


经过上次高速先生的描述,相信大家已经掌握了串联端接的秘诀了,简单来说,那就是第一步:先看看芯片的驱动内阻,第二步:再用加起来50欧姆匹配的方法来选择适合的串阻值,第三步:把这个串阻值放在链路适合的位置!如果之前没关注高速先生的话,那就再看看:为什么串阻阻值通常是22到33欧姆,看完后不信你不懂!这篇文章吧!这三步打出去之后,信号的质量即使不是完美肯定也是非常能打了!对了,好像上一篇文章没有具体的说到第三步哦!那到底什么位置才是最适合的位置呢?

当然,这个问题其实不难,串联端接的全名叫源端串联端接,那正常肯定就是放在源端了。也就是在发送端一出来的位置就立马把这个合适的串阻加上,基本上就是最佳的方案了。当然具体PCB设计一般都是BGA作为发送芯片,这样的话,在BGA扇出后比较近的地方加串阻也是ok的,反正原则就是越靠近源端越好了。


掌握了这个技巧后,基本上80%以上的设计你都可以信手拈来了。但是总有一些信号类型会让你意外,例如那么一种场景,速率同样是几百兆以下的不算很高速的信号,但是不是单向传输,而是双向收发的信号。简单来说就是,你发了我收,我还会发给你收的那种哈!

下面高速先生以一个具体的项目给大家展示下哈!收发芯片的走线大概6000mil,也就是6inch的长度,然后是双向收发的情况,如下所示:


我们会首先选择一个合适的串阻值进行端接,当然不是每个模型都要自己去算芯片的内阻,有的模型会直接告诉你,例如这个项目用的这个模型!在这种特定的驱动下,它的内阻是37欧姆!那我们就能够算出我们需要端接的串阻是大概15欧姆,就能够和50欧姆的传输线去匹配了!

正常情况下如果是单向的信号,我们就可以很轻松的把串阻加在源端,就像下面这样。


这个时候的确波形质量杠杠的!

但是对于双向信号来说,一个方向的信号质量有多潇洒,另外一个方向的信号就会有多拉胯!原因也很简单,你们链路反过来看,那就是另外一边的情景了。

这个时候就相当于把串联端接放到了末端,基本上放不放,也没什么区别了!

那面对这种双向收发的信号,该把串阻放在哪里好呢?感觉讨好了一边,就一定会冷落那一边!话都说到这个份上了,其实对于这种双向收发信号而言,常用的解决方案也已经呼之欲出了!那就是两边都争取讨好一下!

例如把总长度6inch中间分开,一边3inch,然后把串阻加到中间去,这样就两边都能兼顾了。

嗯,其实这个方法挺具有人生哲理的,从结果上看也是这样,原来是一边信号质量贼好,一边信号质量贼差。新方法这样一弄的话,就好的变差,差的又会变好!如果收发模型一样的情况下,那么无论从哪边看,接收端的信号质量都会介于上面好和差的之间。

把三种case摆在一起就是下面这样了。效果就是两边的信号都相对适中,不会有其中一个接收端的信号出现更大的过冲,维持了两个方向信号质量的平衡!

当然再思考下这个人生的哲理,你还能想到其他偏门的方法!大家想想,放一个电阻要考虑源端或者末端两个极端的位置,取个平衡就是放在中间。同样如果完全不怕信号质量的情况下,我们是压根就不放串阻的,那么相比于压根不放串阻的极端是什么呢?那一定就是……

的确,如果接收端都是高阻状态的话,这个方案其实很棒,相当于两个方向都是串阻的完美端接了,对于接收端来说,本身就是高阻,再多个15欧姆的串阻也是一样的!

这个方案的信号质量基本就和任意一端加源端串阻的效果是一样的好!

当然不要问我这种这么好的方案为什么很少在具体设计中出现,我相信原因你们应该都懂!


时间关系,本期的文章就先分析到这里了,关于串联端接技术其实在遇到不同的case会有不同的技术延伸点。下次遇到更有趣的场景,高速先生再给大家娓娓道来了哈!



声明:未经高速先生授权许可,任何机构、媒体、个人不得转载、修改、摘编或以其他方式复制、传播高速先生平台的原创作品。

— end —

Q

本期提问

遇到类似这种双向收发的IO信号,大家在你们的具体产品设计中曾经是怎么做的呢?



如果不想错过“高速先生”的精彩内容,请记得点击上方蓝字“高速先生”,右上角“...”点选“设为星标”。可第一时间看到高速先生的推文,感谢大家的关注和支持!


扫码关注

微信号|高速先生


觉得内容还不错的话,点个“在看”呗

高速先生 一博科技自媒体,用浅显易懂的方式讲述高速设计,有“工程师掌上图书馆”之美称,随时随地为网友解答高速设计技术问题。
评论
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦