如何排查I2C通信失败的问题

汽车ECU开发 2024-07-08 08:21

硬件我们经常会遇到各种各样的问题,一些通信接口也会出现,I2C自然也不例外。

假如遇到I2C没反应,那么可能会出现这种情况:软件工程师说,我软件都已经配好了,但是就是读写不到数据,是不是硬件有问题”。

这个时候,就需要我们了解I2C的通信时序,我们可以通过示波器抓取通信的波形,看是否满足通信时序要求,主机有没有发送数据?I2C通信地址对不对?如果主机有发送数据,从机是否有正常应答?通信信号质量是否OK?如此这般,一般是能够查到问题在哪里的。 
基于上面的问题,这会要求我们掌握I2C的通信时序。毕竟,你只有知道它是长什么样子,你才能知道它对不对

下面就简单介绍下I2C的通信时序。

 
概述

 
I2C总线是一种十分流行并且强大的总线,其多用于一个主机(或多个)与单个或多个从设备通讯的场景。

图1表明了多种不同的外设可以共享这种只需要两根线便可以连接到处理器的总线,相对于其他接口来说,这也是I2C总线可以提供的最大优势之一。

 
这篇应用笔记的目标是帮助用户理解I2C总线是如何工作的。

 

图1展示了一个典型的用于嵌入式系统中的I2C总线,其上挂载了多种从设备。作为I2C主机的从微控制器控制着IO拓展、不同传感器、EEPROM、多个ADC/多个DAC、等等。所有这些设备只需要通过来自主机的两根引脚来控制。

 
1、电特性

 
I2C总线使用开漏输出控制器,在同一线路上带有一个输入缓冲器,这样便可以允许在单根数据线上实现双向数据流传输。

 
用于双向通讯的开漏极

 

开漏输出极允许将总线上的电压拉低(大多数情况下是到地),或释放总线以允许其被上拉电阻拉高。

当总线被主机或从机释放,线上的上拉电阻负责将线上电压上拉到电源轨。由于并没有设备可以在总线上输出高电平,这也就意味着总线在通讯中,将不会碰到一个设备输出高,而另一个设备试图输出低所导致的短路问题(电源轨到地)。

I2C总线要求处于多主机环境下的单个主机在输出高而读回的实际总线电平为低时(这意味着另一个设备拉低了它)中止通讯,因为另一个设备正在使用总线。

采用推挽输出方式的接口就没有这么自由了,这也正是I2C总线的一个优势

 
图2展示了位于SDA/SCL线上的主从设备的内部简化结构,其由一个用于读取数据的缓冲器,以及一个用于发送数据的下拉场效应管组成。

一个设备只被允许拉低总线(规定为短路到地)或释放总线(对地呈现高阻态)以允许上拉电阻拉升总线电平。当处理I2C设备时,有一个重要的概念需要阐明:没有设备可以保持总线为高。这个特性使得双向通讯得以实现。

 
开漏极拉低
 

正如前面章节所述,开漏输出只能将总线拉低,或者释放总线然后依靠上拉电阻拉高总线。图3展示了总线拉低时的电流流向。

当逻辑电路想要发送一个低电平时,其会使能下拉场效应管,场效应管会通过短路到地的方式拉低线路。

 
开漏极释放总线

 

当从机或主机想要传输一个逻辑电平高它只能通过使能场效应管的方式释放总线这将会使得总线处于浮空状态,同时上拉电阻将会将总线电平拉高到供电轨,此电平被当作高电平看待

图4展示了电流如何流过用于拉高总线的上拉电阻。

 
2、I2C接口

 
I2C的常用操作

 

I2C总线是一种双向接口,其使用被称为主机的控制器与从设备进行通讯。从机不会主动传输任何数据,除非其被主机寻址。

每个处于I2C总线上的设备均有独有的设备地址,以用于与位于同一总线上的其他设备做区分。很多从机需要在启动后进行配置以设置设备行为。

这通常在主机访问从机的内部寄存器映射时完成,这些寄存器均有独一无二的寄存器地址单个设备可以具有一个或多个寄存器,这些寄存器可以用来存储或读写数据 

I2C总线的物理接口由串行时钟线(SCL)和串行数据线(SDA)组成。SCL和SDA均需要通过上拉电阻连接到Vcc

上拉电阻的大小由I2C线路上的等效电容大小决定(想要了解更多,可以参考TI的I2C Pull-up Resistor Calculation这份文档,文档号:SLVA689,也可以看讲解 I2C 信号线为何加上拉电阻

数据传送只能在总线空闲时初始化。如果SDA和SCL在一个STOP标志后均处于高电平状态,这时可以认为总线处在空闲状态。

 

主机访问从机的大体流程如下所示:

1、假设一个主机想要向从机发送数据:

a、发送方主机发送一个START标志并且寻址接收方从机

b、发送方主机发送数据到接收方从机

c、发送方主机通过发送STOP标志结束传输

 

2、如果主机想要从从机接收/读取数据:

a、接收方主机发送START标志并寻址发送方从机

b、接收方主机发送需要读取的寄存器地址到发送方从机

c、接收方主机从发送方从机接收数据

d、接收方主机通过发送STOP标志结束通讯

 
START与STOP标志

 

主机可以通过发送START标志初始化与设备的I2C通讯,或者发送STOP标志结束通讯。当SCL处于高电平时,SDA上的下降沿意味着一个START标志,而SDA上的上升沿意味着一个STOP标志。

 
重复的START标志

 

重复的START标志与通常的START标志作用类似,其用于STOP标志后紧接START标志的情况时,用于代替这两者。

它看上去与START标志一致,但是与START标志不同的是,重复的START标志在STOP标志之前出现(也就是总线不处于空闲状态时)。

当主机希望开始一次新的通讯,但又不希望发送STOP标志使总线进入空闲状态时这会非常管用,这样可以防止当前主机的总线控制权被其他主机抢夺(当处于多主机环境下)

数据有效性与字节格式

 

数据位伴随着SCL上的每一个时钟脉冲被传输。单个字节由SDA线上的8位数据组成,其可以是设备地址、寄存器地址或者读自/写入设备的数据

数据以大端在前(MSB)的方式传输。在START标志与STOP标志之间可以传输任意数量的数据字节

SDA线上的数据必须在时钟电平为高时保持稳定,因为SCL线为高时,SDA线上的变动将会被当作控制指令(START或STOP)。

 
应答(ACK)和非应答(NACK

 
数据的每一字节(包括地址字节)后总是伴随着来自接收方的1位ACK位。ACK位使得接收方可以告知发送方当前字节已成功接收,并且可以发送下一字节。

 
在接收方发送ACK位前,发送方必须释放总线。接收方通过在ACK/NACK时钟周期(第9时钟周期)的低电平相位拉低SDA线来发送一个ACK位,如此一来,SDA线将会在ACK/NACK时钟周期的高电平相位保持为低电平。设置与保持时间必须着重注意。

 

如果SDA线在ACK/NACK时钟周期保持为高电平,这将会被作为NACK。有好几种状态将会导致NACK的产生:

1、接收方无法进行接收或发送,因为其正在执行一些实时性功能(real-time function),无法与主机进行通讯。

2、在发送期间,接收方收到了无法识别的数据或指令。

3、在发送期间,接收方无法接收更多数据字节(也就是缓冲区满了)。

4、作为接收方的主机完成了数据读取,因此通过发送一个NACK通知从机。

 
I2C总线数据

 
数据可以写入/读自从机,但是这是通过读写从设备内部的寄存器完成的。

 
包含信息的寄存器处于从机的内存中,无论这些信息是配置信息还是一些需要回发给主机的采样数据。为了指示从机去执行某一任务,主机必须向这些寄存器内写入信息。

 

虽然通常来说I2C从机是具有多个寄存器的,但也需要注意并不是所有从机都是这样。对于一个只具有单个寄存器的简易从机来说,可以通过在从机地址后直接发送数据的方式来直接写这个单一的寄存器,而不需要再对寄存器进行寻址。

一个通过I2C总线控制的8位I2C开关可以很好的作为单寄存器设备的例子。

由于它通过1位来使能/失能一个通道,因此只需要1个寄存器,主机可以在从机地址后直接写入寄存器数据,跳过寄存器编码部分。 

写位于I2C总线上的从机

 

要在I2C总线上执行写操作,主机会发送一个START标志以及从机地址到总线上,并且将最后1位(读写位)设为0以表明这是写操作

当从机发送应答位之后,主机便发送希望写入的寄存器地址。从机再一次应答,通知主机从机已准备好。这之后,主机开始发送寄存器数据到从机。

当主机发送完所有需要发送的数据(有时只是一个字节),其将会通过发送STOP标志结束通讯。 

图8展示了一个写入单个字节到从机寄存器的例子。

 
读位于I2C总线上的从机

 
从从机读取数据与写入数据类似,但是有一些额外的步骤。

 

为了读取从机,主机必须先指示从机自己想要读取哪个寄存器。这一步通过执行与写操作类似的开始通讯步骤完成,发送读写位为0的设备地址(意味着一次写操作),紧跟着希望读的寄存器的地址。

一旦从机应答了此地址,主机将会再一次发送START标志,并发送读写位为1的设备地址(意味着一次读操作)。

这时,从机将会应答读请求,同时主机释放总线但是保持到从机的时钟供应。在通讯流程的这一部分,主机将会作为接收方主机,同时从机将会作为发送方从机。 

主机将会继续发送时钟脉冲,但是会释放SDA线以便于从机传输数据。在每个字节数据的结尾,主机将会发送一个ACK到从机,让从机知道主机准备好接收更多的数据。

一旦主机接收完成期待的字节数量,它将会发送一个NACK,通知从机终止通讯并要求从机释放总线。紧接着主机将会发送一个STOP标志结束通讯。

 

图9展示了从从机寄存器读取单个字节的例子。

-end-


分享不易,恳请点个【👍】和【在看】

汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 60浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 47浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 44浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 50浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 33浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 40浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 32浏览
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 146浏览
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 81浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 40浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 41浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦